Compositional, Structural, and Kinetic Aspects of Lipid Digestion and Bioavailability: In Vitro, In Vivo, and Modeling Approaches

Author(s):  
Sébastien Marze

Lipid digestion and bioavailability are usually investigated separately, using different approaches (in vitro, modeling, in vivo). However, a few inclusive studies show that their kinetics are closely linked. Lipid bioavailability kinetics is likely involved in the development and evolution of several diseases, so lipid digestion kinetics could be involved as well and can be modulated by food design or combination. To illustrate this possibility, the compositional and structural aspects of lipid digestion kinetics, as investigated using in vitro and modeling approaches, are presented first. Then, in vivo and mixed approaches enabling the study of both kinetics are reviewed and discussed. Finally, disparate modeling approaches are introduced, and a unifying modeling scheme is proposed, opening new perspectives for understanding the role and interactions of various factors (chemical, physical, and biological) involved in lipid metabolism. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Author(s):  
Patarajarin Akarapipad ◽  
Kattika Kaarj ◽  
Yan Liang ◽  
Jeong-Yeol Yoon

Adverse effects of environmental toxicants to human health have traditionally been assayed using in vitro assays. Organ-on-chip (OOC) is a new platform that can bridge the gaps between in vitro assays (or 3D cell culture) and animal tests. Microenvironments, physical and biochemical stimuli, and adequate sensing and biosensing systems can be integrated into OOC devices to better recapitulate the in vivo tissue and organ behavior and metabolism. While OOCs have extensively been studied for drug toxicity screening, their implementation in environmental toxicology assays is minimal and has limitations. In this review, recent attempts of environmental toxicology assays using OOCs, including multiple-organs-on-chip, are summarized and compared with OOC-based drug toxicity screening. Requirements for further improvements are identified and potential solutions are suggested. Expected final online publication date for the Annual Review of Analytical Chemistry, Volume 14 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 90 (1) ◽  
Author(s):  
Yongli Zhang ◽  
Frederick M. Hughson

SNARE proteins and Sec1/Munc18 (SM) proteins constitute the core molecular engine that drives nearly all intracellular membrane fusion and exocytosis. While SNAREs are known to couple their folding and assembly to membrane fusion, the physiological pathways of SNARE assembly and the mechanistic roles of SM proteins have long been enigmatic. Here, we review recent advances in understanding the SNARE–SM fusion machinery with an emphasis on biochemical and biophysical studies of proteins that mediate synaptic vesicle fusion. We begin by discussing the energetics, pathways, and kinetics of SNARE folding and assembly in vitro. Then, we describe diverse interactions between SM and SNARE proteins and their potential impact on SNARE assembly in vivo. Recent work provides strong support for the idea that SM proteins function as chaperones, their essential role being to enable fast, accurate SNARE assembly. Finally, we review the evidence that SM proteins collaborate with other SNARE chaperones, especially Munc13-1, and briefly discuss some roles of SNARE and SM protein deficiencies in human disease. Expected final online publication date for the Annual Review of Biochemistry, Volume 90 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2019 ◽  
Vol 26 (30) ◽  
pp. 5609-5624
Author(s):  
Dijana Saftić ◽  
Željka Ban ◽  
Josipa Matić ◽  
Lidija-Marija Tumirv ◽  
Ivo Piantanida

: Among the most intensively studied classes of small molecules (molecular weight < 650) in biomedical research are small molecules that non-covalently bind to DNA/RNA, and another intensively studied class is nucleobase derivatives. Both classes have been intensively elaborated in many books and reviews. However, conjugates consisting of DNA/RNA binder covalently linked to nucleobase are much less studied and have not been reviewed in the last two decades. Therefore, this review summarized reports on the design of classical DNA/RNA binder – nucleobase conjugates, as well as data about their interactions with various DNA or RNA targets, and even in some cases protein targets are involved. According to these data, the most important structural aspects of selective or even specific recognition between small molecule and target are proposed, and where possible related biochemical and biomedical aspects were discussed. The general conclusion is that this, rather new class of molecules showed an amazing set of recognition tools for numerous DNA or RNA targets in the last two decades, as well as few intriguing in vitro and in vivo selectivities. Several lead research lines show promising advancements toward either novel, highly selective markers or bioactive, potentially druggable molecules.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 410 ◽  
Author(s):  
Kristine Bach Korsholm Knudsen ◽  
Christine Heerup ◽  
Tine Røngaard Stange Jensen ◽  
Xiaolu Geng ◽  
Nikolaj Drachmann ◽  
...  

Efficient lipid digestion in formula-fed infants is required to ensure the availability of fatty acids for normal organ development. Previous studies suggest that the efficiency of lipid digestion may depend on whether lipids are emulsified with soy lecithin or fractions derived from bovine milk. This study, therefore, aimed to determine whether emulsification with bovine milk-derived emulsifiers or soy lecithin (SL) influenced lipid digestion in vitro and in vivo. Lipid digestibility was determined in vitro in oil-in-water emulsions using four different milk-derived emulsifiers or SL, and the ultrastructural appearance of the emulsions was assessed using electron microscopy. Subsequently, selected emulsions were added to a base diet and fed to preterm neonatal piglets. Initially, preterm pigs equipped with an ileostomy were fed experimental formulas for seven days and stoma output was collected quantitatively. Next, lipid absorption kinetics was studied in preterm pigs given pure emulsions. Finally, complete formulas with different emulsions were fed for four days, and the post-bolus plasma triglyceride level was determined. Milk-derived emulsifiers (containing protein and phospholipids from milk fat globule membranes and extracellular vesicles) showed increased effects on fat digestion compared to SL in an in vitro digestion model. Further, milk-derived emulsifiers significantly increased the digestion of triglyceride in the preterm piglet model compared with SL. Ultra-structural images indicated a more regular and smooth surface of fat droplets emulsified with milk-derived emulsifiers relative to SL. We conclude that, relative to SL, milk-derived emulsifiers lead to a different surface ultrastructure on the lipid droplets, and increase lipid digestion.


2016 ◽  
Vol 88 ◽  
pp. 199-206 ◽  
Author(s):  
Cecilie Toft Vangsøe ◽  
Anne Krog Ingerslev ◽  
Peter Kappel Theil ◽  
Mette Skou Hedemann ◽  
Helle Nygaard Lærke ◽  
...  

Author(s):  
Janet D. Siliciano ◽  
Robert F. Siliciano

Although antiretroviral therapy (ART) can reduce viremia to below the limit of detection and allow persons living with HIV-1 (PLWH) to lead relatively normal lives, viremia rebounds when treatment is interrupted. Rebound reflects viral persistence in a stable latent reservoir in resting CD4+ T cells. This reservoir is now recognized as the major barrier to cure and is the focus of intense international research efforts. Strategies to cure HIV-1 infection include interventions to eliminate this reservoir, to prevent viral rebound from the reservoir, or to enhance immune responses such that viral replication is effectively controlled. Here we consider recent developments in understanding the composition of the reservoir and how it can be measured in clinical studies. We also discuss exciting new insights into the in vivo dynamics of the reservoir and the reasons for its remarkable stability. Finally we discuss recent discoveries on the complex processes that govern viral rebound. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


1995 ◽  
Vol 1995 ◽  
pp. 113-113
Author(s):  
D M Harris ◽  
A Barlet ◽  
A T Chamberlain

The pressure transducer technique has been proposed as a method of evaluating feed degradation characteristics (Theodorou, 1993) and it has been shown to predict the in vivo and in sacco degradability of forages (Blummel and Orskov, 1993). However the original technique requires rumen liquor and hence access to surgically prepared animals. Faecal material is generally easier to obtain and this work assessed it's suitability as an alternative source of microbes.Rumen liquor (R) and faeces (F) were collected simultaneously from a rumenally fistulated lactating dairy cow. R was mixed 1:1 with modified van Soest medium and F 1:2 to obtain similar dry matter contents. Homogenised strained 20 ml aliquats were inoculated into vented 250 ml bottles containing 180 ml of modified van Soest medium and 1.5g DM of a 7:3 mixture of milled air dried grass silage and 180 g CP / kg DM concentrates. The 7:3 ratio of silage and concentrates was chosen to reflect the diet the donor cow was consuming.


1995 ◽  
Vol 1995 ◽  
pp. 113-113 ◽  
Author(s):  
D M Harris ◽  
A Barlet ◽  
A T Chamberlain

The pressure transducer technique has been proposed as a method of evaluating feed degradation characteristics (Theodorou, 1993) and it has been shown to predict the in vivo and in sacco degradability of forages (Blummel and Orskov, 1993). However the original technique requires rumen liquor and hence access to surgically prepared animals. Faecal material is generally easier to obtain and this work assessed it's suitability as an alternative source of microbes.Rumen liquor (R) and faeces (F) were collected simultaneously from a rumenally fistulated lactating dairy cow. R was mixed 1:1 with modified van Soest medium and F 1:2 to obtain similar dry matter contents. Homogenised strained 20 ml aliquats were inoculated into vented 250 ml bottles containing 180 ml of modified van Soest medium and 1.5g DM of a 7:3 mixture of milled air dried grass silage and 180 g CP / kg DM concentrates. The 7:3 ratio of silage and concentrates was chosen to reflect the diet the donor cow was consuming.


Author(s):  
George E. Seidel

Procedures to maintain viability of mammalian gametes and embryos in vitro, including cryopreservation, have been exceedingly valuable for my research over the past 55 years. Keeping sperm viable in vitro enables artificial insemination, which, when combined with selective breeding, often is the most effective approach to making rapid genetic change in a population. Superovulation and embryo transfer constitute a parallel approach for amplifying reproduction of female mammals. More recent developments include sexing of semen, in vitro fertilization, cloning by nuclear transfer, and genetic modification of germline cells, tools that are enabled by artificial insemination and/or embryo transfer for implementation. I have been fortunate in being able to contribute to the development of many of the above techniques, and to use them for research and applications for improving animal agriculture. Others have built on this work to circumvent human infertility, assist reproduction of companion animals, and rescue endangered species. It also has been a privilege to teach, mentor, and be mentored in this area. Resulting worldwide friendships have enriched me personally and professionally. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Steven Le Feunteun ◽  
Ahmed Al-Razaz ◽  
Matthijs Dekker ◽  
Erwin George ◽  
Beatrice Laroche ◽  
...  

This review focuses on modeling methodologies of the gastrointestinal tract during digestion that have adopted a systems-view approach and, more particularly, on physiologically based compartmental models of food digestion and host–diet–microbiota interactions. This type of modeling appears very promising for integrating the complex stream of mechanisms that must be considered and retrieving a full picture of the digestion process from mouth to colon. We may expect these approaches to become more and more accurate in the future and to serve as a useful means of understanding the physicochemical processes occurring in the gastrointestinal tract, interpreting postprandial in vivo data, making relevant predictions, and designing healthier foods. This review intends to provide a scientific and historical background of this field of research, before discussing the future challenges and potential benefits of the establishment of such a model to study and predict food digestion and absorption in humans. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 12 is March 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document