Effect of Triple Junctions and Grain Size on Oxygen Diffusion Into the Surface Layer of Material

Author(s):  
M. V. Chepak-Gizbrekht
2011 ◽  
Vol 320 ◽  
pp. 325-328 ◽  
Author(s):  
Jiang Wei Ren ◽  
Dong Li ◽  
Pei Quan Xu

A nanocrystallines surface layer was produced in Fe3Al intermetallic compound by surface mechanical attrition treatment (SMAT). The microstructure of deformed layer, phase structure and morphology of surface nanocrystallines were characterized through optical microscopy, X-ray diffractometry, transmission electronic microscopy and high resolution electronic microscopy. The results show that a deformed layer about 11μm wide is produced after 10min surface mechanical attrition. The grains on the top surface of Fe3Al are refined to nanocrystallines and the grain size of nanocrystallines is about 35nm. High density dislocations collect on the boundaries of grains. The formation of nanocrystallines is controlled by grain subdivision mechanism.


2004 ◽  
Vol 261-263 ◽  
pp. 1605-1610 ◽  
Author(s):  
Ai Ling Wen ◽  
R.M. Ren ◽  
Sheng Wu Wang ◽  
Shinichi Nishida

The paper investigated nano-crystallization on surface layer of commercial pure titanium by using high-energy shot peening. The grain size and the microstructure in deformed surface layer by high-energy shot peening are analyzed with X-ray diffraction and TEM etc. In addition, the variations of surface microhardness are examined after high-energy shot peening. The results described that the nano-crystalline surface layer have been formed in commercial pure titanium with a structure of hexagonal closet packet, by high-energy shot peening. The surface microhardness increases and the grain size in nano-crystalline surface layer diminishes, with increasing the time in high-energy shot peening. The minimum nano-crystalline grain size is approximately 40 nm.


2020 ◽  
Vol 315 ◽  
pp. 05002
Author(s):  
Viktor Ovchinnikov ◽  
Irina Kurbatova ◽  
Nadezda Uchevatkina

The aim of this study was to study the properties of 1201 aluminum alloy after ultrasonic treatment and their evolution during subsequent ion implantation using the monotectic Cu-Pb alloy as the cathode material of the implant. It is shown that during ultrasonic treatment the surface layer of aluminum alloy 1201 undergoes significant changes. A nanocrystalline structure with a grain size of less than 200 microns is formed in it. Ultrasonic treatment of the surface of the target from alloy 1201 before implantation leads to a decrease in the depth of penetration of ions to 160–180 nm and the appearance of amorphization in the implanted layer.


2018 ◽  
Vol 251 ◽  
pp. 02023
Author(s):  
Feodor Portnov

The paper studies kinetic properties of aerosols formed in thermal degradation of wood. The impact of modifying agents in wood surface layer on the quantitative composition of smoke aerosol solids was analyzed. For this purpose, grain-size of aerosol solids was analyzed, and the physical and chemical properties of source and modified wood were assessed.


Author(s):  
Shi-Ning Ma ◽  
De-Ma Ba ◽  
Chang-Qing Li ◽  
Fan-Jun Meng

A nanocrystalline surface layer was fabricated on a 38CrSi Steel with tempered sorbite structure by using Supersonic Fine Particles Bombarding (SFPB). The microstructural evolution of SFPB-treated specimens under different processing conditions was characterized by using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Experimental evidence showed severe plastic deformation and obvious grains refinement were observed and a nanocrystalline surface layer (grain size < 100nm) was found after SFPB treatment. The thickness of nanostructured surface layer varies from a few to about 25μm as treated time increasing from 80s to 240s, but the grain size varies slightly. For the sample treated for 240s, the average grain size of equiaxed nanocrystallites with random crystallographic orientations on the top surface layer is about 16nm. The indexing of diffraction rings indicates nanostructured surface layer consists of ferrite and cementite phases without any evidence of a new phase. The structure size increases gradually from nano-scale to original-scale with an increase of the distance from the top surface layer. In the region about 20–30μm deep from the top surface, the microstructures are mainly composed of 60–100nm roughly equiaxed grains and subgrains. Some subbounsaries are composed of dense dislocation walls (DDWs). In this regime some cell structures are also seen, which are separated by dislocation lines (DTs) and some DDWs. Experimental analysis indicate coarse-grains are gradually refined into nano-sized grains by dislocations activity with gradual increase of strain and strain rate from matrix to treated surface. Both ferrite and cementite phases occur grain refinement. Grain refinement of 38CrSi sample is mainly attributed to the movement of dislocation.


2010 ◽  
Vol 163 ◽  
pp. 59-63 ◽  
Author(s):  
Zdenek Pala ◽  
N. Ganev ◽  
Jan Drahokoupil ◽  
Alexej Sveshnikov

Inhomogeneous thermal fields and plastic deformation are two basic phenomena present during surface creation and substantially determine future real structure of the surface layers. In the following, a closer look will be taken at some aspects connected with real structure of milled and ground steels. Impact of end-mill speed and thickness of removed layer on grain size, macroscopic and microscopic residual stress is discussed. Possibility of prestrained surface layer in ground steel has been examined on a set of five types of steels.


2003 ◽  
Vol 788 ◽  
Author(s):  
Laxmikant Saraf ◽  
V. Shutthanandan ◽  
S. Thevuthasan ◽  
C. M. Wang ◽  
K. T. Koch ◽  
...  

ABSTRACTOxygen (18O) diffusivity in sol-gel synthesized nano-crystalline ceria films of average grain size of 3 nm and 7 nm, annealed at 300 °C and 450 °C for one hour respectively is examined by nuclear reaction analysis (NRA). Diffusivity and electrical transport properties measured by a. c. impedance spectroscopy were compared with microcrystalline ceria film of average grain size 38 nm annealed at 900 °C for one hour. Effect of enhanced oxygen diffusion along with reduced ionic transport in nano-crystalline ceria and reduced oxygen diffusion along with enhanced ionic transport in microcrystalline ceria are correlated to long range ordering, grain boundary scattering and defect density. Enhancement in the conductivity with reduction in activation energy from 1 eV to 0.5 eV in the case 4 atom% ytterbium (Yb) doped ceria compared to pure ceria is a result of increased oxygen vacancies taking part in the defect transport.


2007 ◽  
Vol 22 (7) ◽  
pp. 1947-1953 ◽  
Author(s):  
X.N. Du ◽  
B.Q. Wang ◽  
J.D. Guo

A nanocrystalline surface layer of a Cu–Zn alloy was developed by electropulsing (ECP) surface treatment. The average grain size was about 20 nm on the top surface layer and was gradually augmented with the increase in depth from the top surface. Nanoindentation measurements showed that the hardness was significantly enhanced on the top surface layer compared with the as-annealed Cu–Zn sample. The mechanism for the evolution of this structure and property was related not only to a solid-state phase transformation, but also to the effect of the enhancement of the nucleation rate and the skin effect during the ECP treatment. Therefore, the ECP surface treatment provides a promising method for obtaining surface self-nanocrystallization materials.


Sign in / Sign up

Export Citation Format

Share Document