seizure propagation
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 20)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anirudh N. Vattikonda ◽  
Meysam Hashemi ◽  
Viktor Sip ◽  
Marmaduke M. Woodman ◽  
Fabrice Bartolomei ◽  
...  

AbstractFocal drug resistant epilepsy is a neurological disorder characterized by seizures caused by abnormal activity originating in one or more regions together called as epileptogenic zone. Treatment for such patients involves surgical resection of affected regions. Epileptogenic zone is typically identified using stereotactic EEG recordings from the electrodes implanted into the patient’s brain. Identifying the epileptogenic zone is a challenging problem due to the spatial sparsity of electrode implantation. We propose a probabilistic hierarchical model of seizure propagation patterns, based on a phenomenological model of seizure dynamics called Epileptor. Using Bayesian inference, the Epileptor model is optimized to build patient specific virtual models that best fit to the log power of intracranial recordings. First, accuracy of the model predictions and identifiability of the model are investigated using synthetic data. Then, model predictions are evaluated against a retrospective patient cohort of 25 patients with varying surgical outcomes. In the patients who are seizure free after surgery, model predictions showed good match with the clinical hypothesis. In patients where surgery failed to achieve seizure freedom model predictions showed a strong mismatch. Our results demonstrate that proposed probabilistic model could be a valuable tool to aid the clinicians in identifying the seizure focus.


Neuron ◽  
2021 ◽  
Author(s):  
ManKin Choy ◽  
Ehsan Dadgar-Kiani ◽  
Greg O. Cron ◽  
Ben A. Duffy ◽  
Florian Schmid ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ida A. Nissen ◽  
Ana P. Millán ◽  
Cornelis J. Stam ◽  
Elisabeth C. W. van Straaten ◽  
Linda Douw ◽  
...  

AbstractThe success of epilepsy surgery in patients with refractory epilepsy depends upon correct identification of the epileptogenic zone (EZ) and an optimal choice of the resection area. In this study we developed individualized computational models based upon structural brain networks to explore the impact of different virtual resections on the propagation of seizures. The propagation of seizures was modelled as an epidemic process [susceptible-infected-recovered (SIR) model] on individual structural networks derived from presurgical diffusion tensor imaging in 19 patients. The candidate connections for the virtual resection were all connections from the clinically hypothesized EZ, from which the seizures were modelled to start, to other brain areas. As a computationally feasible surrogate for the SIR model, we also removed the connections that maximally reduced the eigenvector centrality (EC) (large values indicate network hubs) of the hypothesized EZ, with a large reduction meaning a large effect. The optimal combination of connections to be removed for a maximal effect were found using simulated annealing. For comparison, the same number of connections were removed randomly, or based on measures that quantify the importance of a node or connection within the network. We found that 90% of the effect (defined as reduction of EC of the hypothesized EZ) could already be obtained by removing substantially less than 90% of the connections. Thus, a smaller, optimized, virtual resection achieved almost the same effect as the actual surgery yet at a considerably smaller cost, sparing on average 27.49% (standard deviation: 4.65%) of the connections. Furthermore, the maximally effective connections linked the hypothesized EZ to hubs. Finally, the optimized resection was equally or more effective than removal based on structural network characteristics both regarding reducing the EC of the hypothesized EZ and seizure spreading. The approach of using reduced EC as a surrogate for simulating seizure propagation can suggest more restrictive resection strategies, whilst obtaining an almost optimal effect on reducing seizure propagation, by taking into account the unique topology of individual structural brain networks of patients.


2021 ◽  
Author(s):  
Ana P Millan ◽  
Elisabeth CW van Straaten ◽  
Cornelis J Stam ◽  
Ida A Nissen ◽  
Sander Idema ◽  
...  

Background Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients. However, seizure-freedom is currently achieved in only 2/3 of the patients after surgery. In this study we have developed an individualized computational model based on functional brain networks to explore seizure propagation and the efficacy of different virtual resections. Eventually, the goal is to obtain individualized models to optimize resection strategy and outcome. Methods We have modelled seizure propagation as an epidemic process using the susceptible-infected (SI) model on individual functional networks derived from presurgical MEG. We included 10 patients who had received epilepsy surgery and for whom the surgery outcome at least one year after surgery was known. The model parameters were tuned in order to reproduce the patient-specific seizure propagation patterns as recorded with invasive EEG. We defined a personalized search algorithm that combined structural and dynamical information to find resections that maximally decreased seizure propagation for a given resection size. The optimal resection for each patient was defined as the smallest resection leading to at least a $90\%$ reduction in seizure propagation. Results The individualized model reproduced the basic aspects of seizure propagation for 9 out of 10 patients when using the resection area as the origin of epidemic spreading, and for 10 out of 10 patients with an alternative definition of the seed region. We found that, for 7 patients, the optimal resection was smaller than the resection area, and for 4 patients we also found that a resection smaller than the resection area could lead to a 100% decrease in propagation. Moreover, for two cases these alternative resections included nodes outside the resection area. Conclusion Epidemic spreading models fitted with patient specific data can capture the fundamental aspects of clinically observed seizure propagation, and can be used to test virtual resections in silico. Combined with optimization algorithms, smaller or alternative resection strategies, that are individually targeted for each patient, can be determined with the ultimate goal to improve surgery outcome.


2021 ◽  
Author(s):  
Seth Lieberman ◽  
Daniel A. Rivera ◽  
Ryan Morton ◽  
Amrit Hingorani ◽  
Teresa L. Southard ◽  
...  

In partial onset epilepsy, seizures arise focally in the brain and often propagate, causing acute behavior changes, chronic cognitive decline, and increased mortality. Patients frequently become refractory to medical management, leaving neurosurgical resection of the seizure focus as a primary treatment, which can cause neurologic deficits. In the cortex, focal seizures are thought to spread through horizontal connections in layers II/III, suggesting that selectively severing these connections could block seizure propagation while preserving normal columnar circuitry and function. We induced focal neocortical epilepsy in mice and used tightly-focused femtosecond-duration laser pulses to create a sub-surface, open-cylinder cut surrounding the seizure focus and severing cortical layers II-IV. We monitored seizure propagation using electrophysiological recordings at the seizure focus and at distant electrodes for 3-8 months. With laser cuts, only 5% of seizures propagated to the distant electrodes, compared to 85% in control animals. Laser cuts also decreased the number of seizures that were initiated, so that the average number of propagated seizures per day decreased from 42 in control mice to 1.5 with laser cuts. Physiologically, these cuts produced a modest decrease in cortical blood flow that recovered within days and, at one month, left a ~20-μm wide scar with increased gliosis and localized inflammatory cell infiltration but minimal collateral damage. When placed over motor cortex, cuts did not cause notable deficits in a skilled reaching task. Femtosecond laser produced sub-surface cuts hold promise as a novel neurosurgical approach for intractable focal cortical epilepsy, as might develop following traumatic brain injury.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mohamed Khateb ◽  
Noam Bosak ◽  
Moshe Herskovitz

The propagation of epileptiform events is a highly interesting phenomenon from the pathophysiological point of view, as it involves several mechanisms of recruitment of neural networks. Extensive in vivo and in vitro research has been performed, suggesting that multiple networks as well as cellular candidate mechanisms govern this process, including the co-existence of wave propagation, coupled oscillator dynamics, and more. The clinical importance of seizure propagation stems mainly from the fact that the epileptic manifestations cannot be attributed solely to the activity in the seizure focus itself, but rather to the propagation of epileptic activity to other brain structures. Propagation, especially when causing secondary generalizations, poses a risk to patients due to recurrent falls, traumatic injuries, and poor neurological outcome. Anti-seizure medications (ASMs) affect propagation in diverse ways and with different potencies. Importantly, for drug-resistant patients, targeting seizure propagation may improve the quality of life even without a major reduction in simple focal events. Motivated by the extensive impact of this phenomenon, we sought to review the literature regarding the propagation of epileptic activity and specifically the effect of commonly used ASMs on it. Based on this body of knowledge, we propose a novel classification of ASMs into three main categories: major, minor, and intermediate efficacy in reducing the propagation of epileptiform activity.


Epilepsia ◽  
2021 ◽  
Author(s):  
Fabien Boux ◽  
Florence Forbes ◽  
Nora Collomb ◽  
Emma Zub ◽  
Lucile Mazière ◽  
...  

2021 ◽  
Author(s):  
Ida A. Nissen ◽  
Cornelis J. Stam ◽  
Elisabeth C.W. Straaten ◽  
Ana P. Millán ◽  
Linda Douw ◽  
...  

Abstract BackgroundThe success of epilepsy surgery in patients with refractory epilepsy depends upon correct identification of the epileptogenic zone (EZ) and an optimal choice of the resection area. In this study we developed individualized computational models based upon structural brain networks to explore the impact of different virtual resections on the propagation of seizures.MethodsThe propagation of seizures was modelled as an epidemic process (susceptible-infected-recovered (SIR) model) on individual structural networks derived from presurgical diffusion tensor imaging (DTI) in 19 patients. The candidate connections for the virtual resection were all connections from the clinically hypothesized EZ, from which the seizures were modelled to start, to other brain areas. As a computationally feasible surrogate for the SIR model, we also removed the connections that maximally reduced the Eigenvector Centrality (EC) (large values indicate network hubs) of the hypothesized EZ, with a large reduction meaning a large effect. The optimal combination of connections to be removed for a maximal effect were found using simulated annealing. For comparison, the same number of connections were removed randomly, or based on measures that quantify the importance of a node or connection within the network.ResultsWe found that 90% of the effect (defined as reduction of EC of the hypothesized EZ) could already be obtained by removing substantially less than 90% of the connections. Thus, a smaller, optimized, virtual resection achieved almost the same effect as the actual surgery yet at a considerably smaller cost, sparing on average 27.49% (standard deviation: 4.65%) of the connections. Furthermore, the maximally effective connections linked the hypothesized EZ to hubs. Finally, the optimized resection was more effective than random removal of the same number of connections, and equally or more effective than removal based on structural network characteristics.ConclusionThe approach of using reduced EC as a surrogate for simulating seizure propagation can suggest more restrictive resection strategies, whilst obtaining an almost optimal effect on reducing seizure propagation, by taking into account the unique topology of individual structural brain networks of patients.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000011846
Author(s):  
Roni Dhaher ◽  
Shaun E. Gruenbaum ◽  
Mani Ratnesh S. Sandhu ◽  
Sigrid Ottestad-Hansen ◽  
Nathan Tu ◽  
...  

Objective:To test the hypothesis that glutamate and GABA are linked to the formation of epilepsy networks and the triggering of spontaneous seizures, we examined seizure initiation/propagation characteristics and neurotransmitter levels during epileptogenesis in a translationally relevant rodent model of mesial temporal lobe epilepsy.Methods:The glutamine synthetase (GS) inhibitor methionine sulfoximine was infused into one of the hippocampi in laboratory rats to create a seizure focus. Long-term video-intracranial EEG recordings and brain microdialysis combined with mass spectrometry were used to examine seizure initiation, seizure propagation, and extracellular brain levels of glutamate and GABA.Results:All seizures (n = 78 seizures, n = 3 rats) appeared first in the GS-inhibited hippocampus of all animals, followed by propagation to the contralateral hippocampus. Propagation time decreased significantly from 11.65 seconds early in epileptogenesis (weeks 1-2) to 6.82 seconds late in epileptogenesis (weeks 3 – 4, paired t-test, p = 0.025). Baseline extracellular glutamate levels were 11.6-fold higher in the hippocampus of seizure propagation (7.3 µM) vs. the hippocampus of seizure onset (0.63 µM, ANOVA/Fisher’s LSD, p = 0.01), even though the concentrations of the major glutamate transporter proteins EAAT1, EAAT2 and xCT were unchanged between the brain regions. Finally, extracellular GABA in the seizure focus decreased significantly from baseline several hours before a spontaneous seizure (paired t-test/FDR).Conclusion:The changes in glutamate and GABA suggest novel and potentially important roles of the amino acids in epilepsy network formation and in the initiation and propagation of spontaneous seizures.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Steven Tobochnik ◽  
Lisa M. Bateman ◽  
Cigdem I. Akman ◽  
Deepti Anbarasan ◽  
Carl W. Bazil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document