Effects of Ion-Slip and Hall Currents on Magnetohydrodynamic Nanofluid Flow with Thermal Diffusion Using Spectral Quasi-Linearization Method

2021 ◽  
Vol 10 (4) ◽  
pp. 608-615
Author(s):  
Hiranmoy Mondal ◽  
Sharmistha Ghosh ◽  
Pranab Kanti Roy ◽  
Sewli Chatterjee

We scrutinize and numerically investigate the behavior of magnetic nanofluid flow in stagnation region in the presence of ion-slip and Hall currents. Employing similarity technique, the governing equations modeling the boundary layer flow are switched into highly nonlinear ODEs. The resultant equations are then solved numerically by the method of spectral quasi-linearization. The effect of varying various pertinent parameters within the fluid flow are taken into account and the results are analyzed graphically. It may be noted that the velocity increases in the x- as well as z-directions with an increment in the Hall parameter. The concentration indicates a decreasing trend with increasing values of the Eckert number. The computed results also show that the volume fraction effects diminishes as the Schmidt number increases.

Author(s):  
M. S. Alqarni ◽  
Hassan Waqas ◽  
Sumeira Yasmin ◽  
Taseer Muhammad

The prime aim of this investigation is to discuss the two-dimensional steady analysis of hybrid nanoliquids in the existence of magnetohydrodynamics (MHD), thermally radiation and viscous dissipation effects over a linear stretchable sheet. Carbon nanotubes (SWCNT and MWCNT) with copper (Cu) are comprised in the propylene glycol-based fluid. The significance of propylene glycol-based fluid is affected under the exponential space-based heat source phenomenon. The remarkable role of propylene glycol on thermal transport of hybrid nanoliquids is influenced in the presence of temperature-dependent viscosity. The highly nonlinear governing partial differential structures are reduced to nonlinear ODEs by using suitable transformations. The transformed nonlinear ODEs of flow problem have been solved numerically by employing bvp4c (shooting) scheme with Lobatto-IIIA formula in MATLAB. The physical outcomes of involved parameters are obtained by utilizing the graphical and tabular data. The heat transport rate and the skin friction under the numerical data are also presented. From the results, we concluded that the velocity of fluid is declined for higher nanoparticles volume fraction. Velocity of fluid is declined with growing magnetic parameter. Furthermore, the temperature is upgraded with the growing thermal Biot number.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
S. S. Motsa

We propose a simple and efficient method for solving highly nonlinear systems of boundary layer flow problems with exponentially decaying profiles. The algorithm of the proposed method is based on an innovative idea of linearizing and decoupling the governing systems of equations and reducing them into a sequence of subsystems of differential equations which are solved using spectral collocation methods. The applicability of the proposed method, hereinafter referred to as the spectral local linearization method (SLLM), is tested on some well-known boundary layer flow equations. The numerical results presented in this investigation indicate that the proposed method, despite being easy to develop and numerically implement, is very robust in that it converges rapidly to yield accurate results and is more efficient in solving very large systems of nonlinear boundary value problems of the similarity variable boundary layer type. The accuracy and numerical stability of the SLLM can further be improved by using successive overrelaxation techniques.


2020 ◽  
Vol 4 (1) ◽  
pp. 3 ◽  
Author(s):  
Alias Jedi ◽  
Azhari Shamsudeen ◽  
Noorhelyna Razali ◽  
Haliza Othman ◽  
Nuryazmin Ahmat Zainuri ◽  
...  

This paper reports the use of a numerical solution of nanofluid flow. The boundary layer flow over a stretching sheet in combination of two nanofluids models is studied. The partial differential equation that governs this model was transformed into a nonlinear ordinary differential equation by using similarity variables, and the numerical results were obtained by applying the shooting technique. Copper (Cu) nanoparticles (water-based fluid) were used in this study. This paper presents and discusses all numerical results, including those for the local Sherwood number and the local Nusselt number. Additionally, the effects of the nanoparticle volume fraction, Brownian motion Nb, and thermophoresis Nt on the performance of heat transfer are discussed. The results show that the stretching sheet has a unique solution: as the nanoparticle volume fraction φ (φ = 0), Nt (Nt = 0.1), and Nb decrease, the rate of heat transfer increases. Furthermore, as φ (φ = 0) and Nb decrease, the rate of mass transfer increases. The data of the Nusselt and Sherwood numbers were tested using different statistical distributions, and it is found that both datasets fit the Weibull distribution for different values of Nt and rotating φ.


2017 ◽  
Vol 65 (3) ◽  
pp. 383-390 ◽  
Author(s):  
M. Bilal ◽  
S. Hussain ◽  
M. Sagheer

AbstractIn the present article, magneto-micropolar nanofluid flow with suction or injection in a porous medium over a stretching sheet for the heat and mass transfer is analyzed numerically. Both Hall and ion-slip effects are considered along with variable thermal diffusivity. The governing partial differential equations are transformed to ordinary differential equations using usual similarity transformations. These coupled non-linear differential equations are solved using the shooting method. Effects of prominent parameter on velocities, temperature and concentration are discussed graphically. Numerical values of skin-friction coefficient, local Nusselt number and local Sherwood number are also tabulated and discussed.


Author(s):  
Mohammed Almakki ◽  
Sharadia Dey ◽  
Sabyasachi Mondal ◽  
Precious Sibanda

We investigate entropy generation in unsteady three-dimensional axisymmetric MHD nanofluid flow over a non-linearly stretching sheet. The flow is subject to thermal radiation and a chemical reaction. The conservation equations were solved using the spectral quasi-linearization method. The novelty of the work is in the study of entropy generation in three-dimensional axisymmetric MHD nanofluid and the choice of the spectral quasilinearization method as the solution method. The effects of Brownian motion and thermophoresis are also taken into account when the nanofluid particle volume fraction on the boundary in passively controlled. The results show that as the Hartman number increases, both the Nusselt number and the Sherwood number decrease whereas the skin friction increases. It is further shown that an increase in the thermal radiation parameter corresponds to a decrease in the Nusselt number. Moreover, entropy generation increases with the physical parameters.


2018 ◽  
Vol 22 (1 Part B) ◽  
pp. 443-451
Author(s):  
Ammar Mushtaq ◽  
Junaid Khan ◽  
Meraj Mustafa ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi

Present paper examines the boundary-layer flow of magnetic nanofluid over a radiative plate moving in a uniform parallel free stream. Water is considered as the base fluid which is being filled with magnetite-Fe3O4 nanoparticles. Energy balance equation is formulated with non-linear radiation heat flux. Mathematical analysis is carried out through the famous Tiwari and Das model. Similarity approach is utilized to construct self-similar form of the governing differential system. Numerical computations are made through standard shooting method. Ferrofluid velocity is predicted to enhance upon increasing the nanoparticle volume fraction which contradicts with the available literature for non-magnetic nanofluids. It is found that Fe3O4-water ferrofluid has superior heat transfer coefficient than pure water. Results reveal that consideration of magnetic nanoparticles in water leads to better absorption of incident solar radiations. The well-known Blasius and Sakiadis flows are also explicitly analyzed from the present model.


2017 ◽  
Vol 34 (8) ◽  
pp. 2651-2667 ◽  
Author(s):  
M. Sheikholeslami

Purpose This main purpose of this paper is to investigate the influence of Lorentz forces on magnetic nanofluid free convection in a porous media. Control volume based finite element method (CVFEM) is chosen to simulate the purpose of this paper. Influences of Darcy number, Fe3O4–water volume fraction, Hartmann and Rayleigh numbers on hydrothermal behavior are presented. Design/methodology/approach Magnetic nanofluid flow in a permeable medium is studied numerically using the non-Darcy model. Outputs are obtained by means of CVFEM. Findings Results indicated that isotherms become denser near the inner cylinder with augmentation of the permeability of the porous media. The Nusselt number enhances with an increase in buoyancy forces, Darcy number but it detracts with augment of Lorentz forces. Originality/value Results depict that the effect of the Hartmann number on rate of heat transfer is more observable in a medium with higher permeability.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Haroon Ur Rasheed ◽  
Saeed Islam ◽  
Zeeshan Khan ◽  
Sayer O. Alharbi ◽  
Waqar A Khan ◽  
...  

The present communication particularizes nonlinear convective non-Newtonian stagnation point flow and heat transference effects in stretchable flow of nanofluid. Magnetohydromagnetic steady viscous flow of nanofluid is examined. Heat transfer attributes of nanofluids are addressed via a numerical algorithm. Conductivity and diffusivity characteristics of fluid are depending on temperature and concentration and furthermore, on mass conservation, momentum, energy, and concentration yield partial differential equations (PDEs). The boundary layer flow concept pioneered by Prandtl has been employed to simplify the nonlinear constitutive flow laws which are then changed to ordinary differential equations. A built-in bvp4c algorithm in Mathematica software yields convergent outcomes of nonlinear (ODEs) systems. A comprehensive analysis has been made elucidating the physical significance of various governing parameters effects presented graphically. Additionally, the flow nature was confirmed versus streamlines.


Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 637-646 ◽  
Author(s):  
Hloniphile M. Sithole ◽  
Sabyasachi Mondal ◽  
Precious Sibanda ◽  
Sandile S. Motsa

AbstractThe main focus of this study is on unsteady Maxwell nanofluid flow over a shrinking surface with convective and slip boundary conditions. The objective is to give an evaluation of the impact and significance of Brownian motion and thermophoresis when the nanofluid particle volume fraction flux at the boundary is zero. The transformed equations are solved numerically using the spectral local linearization method. We present an analysis of the residual errors to show the accuracy and convergence of the spectral local linearization method. We explore the effect of magnetic field and thermophoresis parameters on the heat transfer rate. We show, among other results, that an increase in particle Brownian motion leads to a decrease in the concentration profiles but concentration profiles increase with the increasing value of thermophoresis parameter


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Ramzan ◽  
Jae Dong Chung ◽  
Seifedine Kadry ◽  
Yu-Ming Chu ◽  
Muhammad Akhtar

Abstract A mathematical model is envisioned to discourse the impact of Thompson and Troian slip boundary in the carbon nanotubes suspended nanofluid flow near a stagnation point along an expanding/contracting surface. The water is considered as a base fluid and both types of carbon nanotubes i.e., single-wall (SWCNTs) and multi-wall (MWCNTs) are considered. The flow is taken in a Dacry-Forchheimer porous media amalgamated with quartic autocatalysis chemical reaction. Additional impacts added to the novelty of the mathematical model are the heat generation/absorption and buoyancy effect. The dimensionless variables led the envisaged mathematical model to a physical problem. The numerical solution is then found by engaging MATLAB built-in bvp4c function for non-dimensional velocity, temperature, and homogeneous-heterogeneous reactions. The validation of the proposed mathematical model is ascertained by comparing it with a published article in limiting case. An excellent consensus is accomplished in this regard. The behavior of numerous dimensionless flow variables including solid volume fraction, inertia coefficient, velocity ratio parameter, porosity parameter, slip velocity parameter, magnetic parameter, Schmidt number, and strength of homogeneous/heterogeneous reaction parameters are portrayed via graphical illustrations. Computational iterations for surface drag force are tabulated to analyze the impacts at the stretched surface. It is witnessed that the slip velocity parameter enhances the fluid stream velocity and diminishes the surface drag force. Furthermore, the concentration of the nanofluid flow is augmented for higher estimates of quartic autocatalysis chemical.


Sign in / Sign up

Export Citation Format

Share Document