scholarly journals Silver Nanoparticles Formation by Nanosecond Pulsed Laser Irradiation in an Aqueous Solution of Silver Nitrate; Effect of Sodium bis (2-ethyl hexyl) Sulfosuccinate

2021 ◽  
Vol 24 (1) ◽  
pp. 38-42
Author(s):  
Umair Yaqub Qazi

A photochemical reduction of a silver salt precursor using near-ultra-violet (UV) pulsed laser (355 nm) irradiation into aqueous surfactant sodium-bis (2–ethylhexyl) sulfosuccinate (AOT) solution has succeeded in synthesizing homogenous speculative silver nanoparticles (Ag NPs). Without using any additive, the irradiation from ns laser pulses to aqueous silver nitrate solution was observed to create nanocubes (NCs). The photoproduct was transformed into a nanosphere when irradiated with a particular AOT concentration. The photoproduct concentration of NCs to NSs was approximately ten times lower than the critical concentration of micellar (CMC) in AOT, which means that the growth of NSs was aided in a single layer of AOT adsorbed on silver surfaces. A UV / Visible Spectrophotometer and Transmission/Scanning electron microscopy (TEM/SEM) were used to characterize the photochemically synthesized sample thoroughly. The mean size of AgNSs, analyzed by TEM, was 8 nm. These parameters have shown the growth of AgNSs and discussed in the paper. These nanoparticles are potential candidates for catalyst, semiconductor, photovoltaic equipment, medical diagnostics applications than bulk materials.

2008 ◽  
Vol 37 (8) ◽  
pp. 818-819 ◽  
Author(s):  
Yoshiko Miura ◽  
Kazuko Yui ◽  
Hiroshi Uchida ◽  
Kiyoshi Itatani ◽  
Seiichiro Koda

2018 ◽  
Vol 772 ◽  
pp. 73-77
Author(s):  
Ruelson S. Solidum ◽  
Arnold C. Alguno ◽  
Rey Capangpangan

We report on the green synthesis of silver nanoparticles utilizing theP.purpureumleaf extract. Controlling the surface plasmon absorption of silver nanoparticles was achieved by regulating the amount of extract concentration and the molarity of silver nitrate solution. The surface plasmon absorption peak is found at around 430nm. The surface plasmon absorption peak have shifted to lower wavelength as the amount of extract is increased, while plasmon absorption peak shifts on a higher wavelength as the concentration of silver nitrate is increased before it stabilized at 430nm. This can be explained in terms of the available nucleation sites promoted by the plant extract as well as the available silver ions present in silver nitrate solution.


2021 ◽  
Vol 37 (2) ◽  
pp. 126-133
Author(s):  
O.O Elekofehinti ◽  
M.O Akinjiyan

Hyperlipidemia and hyperglycemia have been implicated in diabetes mellitus (DM) leading to complications such as nephropathy. Medicinal plants like Mormodica charantia (MC) have been used in the treatment of DM over the years but little is known about their mechanisms of action. This study used biotechnology tools to investigate and compare the effects of M. charantia silver nanoparticles (MCSNPs) with M. charantia extract on expressions of genes linked with nephrotoxicity, lipid and glucose metabolisms using reverse-transcriptase polymerase chain reaction (RT-PCR) in streptozotocin-induced diabetic rats. The genes investigated include kidney injury molecule-1 (KIM-1), 3-hydroxyl, 3-methyl glutaryl_coA reductase (HMG-CoA reductase), peroxisome proliferator-activated receptor alpha and gamma (PPARα and PPARγ). Synthesis of MCSNPs was done using 1 mM concentration of aqueous silver nitrate solution at ratio 1:9 (v/v). Experimental rats were induced intraperitoneally with streptozotocin (65 mg/kg) and divided into six groups viz: diabetic control; normal control; silver nitrate (10 mg/kg); MCSNPs (50 mg/kg); Metformin (100 mg/kg) and M. charantia fraction (100 mg/kg). Sacrifice was done after 12 days of treatment and RT-PCR was then used to investigate gene expressions in liver and kidney tissues of the rats. The expression of HMG-CoA reductase gene was significantly upregulated (p<0.05) upon treatment with 50 mg/kg MCSNPs relative to the diabetic untreated group. M. charantia extracts and MCSNPs significantly upregulate (p<0.05) the expressions of PPAR-α and PPAR-γ compared to the diabetic control. Also, a significant (p<0.05) down-regulation of KIM-1 mRNA expression was observed in MCSNPs- treated group, relative to the diabetes untreated group. M. charantia silver nanoparticles could be a potent antidiabetic agent due to its potential to modulate genes associated with lipid metabolism and nephrotoxicity. Keywords: Medicinal plant; Diabetes Mellitus; Silver Nanoparticles; nephrotoxicity; gene expression


2018 ◽  
Vol 18 (3) ◽  
pp. 421 ◽  
Author(s):  
Dian Susanthy ◽  
Sri Juari Santosa ◽  
Eko Sri Kunarti

A study to examine the performance of p-aminobenzoic acid as both reducing agent for silver nitrate to silver nanoparticles (AgNPs) and stabilizing agent for the formed AgNPs has been done. The synthesis of AgNPs was performed by mixing silver nitrate solution as precursor with p-aminobenzoic acid solution and heating it in a boiling water bath. After the solution turned to yellow, the reaction stopped by cooling it in tap water. The formed AgNPs were analyzed by using UV-Vis spectrophotometry to evaluate their SPR absorption in wavelength range of 400–500 nm. The synthesis process was highly depend on the pH, reaction time, and mole ratios of the reactants. The synthesis only occur in pH 11 and at reaction time 30 min, the particle size of the formed AgNPs was 12 ± 7 nm. Longer reaction time increased the reducing performance of p-aminobenzoic acid in AgNPs synthesis but decreased its stabilizing performance. The increase of silver nitrate amount relative to p-aminobenzoic acid in the synthesis increased the reducing and stabilizing performance of p-aminobenzoic acid and the optimum mole ratio between AgNO3 and p-aminobenzoic acid was 5:100 (AgNO3 to p-aminobenzoic acid).


2016 ◽  
Vol 15 (05n06) ◽  
pp. 1660001 ◽  
Author(s):  
V. P. Manjamadha ◽  
Karuppan Muthukumar

The current work elucidates the utilization of biowaste as a valuable reducing agent for the synthesis of silver nanoparticles. In this study, the wastewater generated during the alkaline pretreatment of lignocellulosic wastes (APLW) was used as a bioreductant to reduce silver nitrate under room temperature. Synthesis of stable silver nanoparticles (AgNPs) was achieved rapidly on addition of APLW into the silver nitrate solution (1[Formula: see text]mM). The morphological characterization of AgNPs was performed using field emission scanning electron microscopy (FESEM). The micrograph clearly depicted the presence of spherical AgNPs. The presence of elemental silver along with biomoilties was determined using energy dispersive X-ray spectroscopy (EDAX) analysis. The X-ray diffraction (XRD) study proved the crystalline form of stable AgNPs. The AgNPs exhibited excellent antibacterial performance against Gram negative organism. The immediate bioreduction of silver ions using APLW was well illustrated in the present study. Thus, APLW serve as an alternative source for reducing agents instead of utilizing valuable medicinal plants for nanoparticles synthesis.


Author(s):  
Inbathamizh L ◽  
Kalpana V ◽  
Revathi Yadav K

With the increase in the potential applications of nanoparticles in pharma and various fields, nanoparticle research is attracting more attention. Though several chemical and physical methods are being used for the synthesis of metal nanoparticles, they are associated with several disadvantages. Couroupita guianensis is a traditional plant with medicinal values. The focus of the study was to follow a green chemistry route to synthesize silver nanoparticles (AgNPs) using the leaf extract of Couroupita guianensis as a reductant and stabilizing agent. The boiled aqueous leaf extract with silver nitrate solution on exposure to sunlight showed the maximum absorbance at 430nm indicating the synthesis of AgNPs. Ultra Violet (UV)-Visible spectroscopy, Scanning Electron Microscopy (SEM), and Fourier Transform Infrared spectroscopy (FTIR) techniques were used for the characterization of AgNPs. The synthesized AgNPs were found to be spherical and 4.44 – 40.20nm in size. They also seemed to be capped with the significant functional groups present in the leaf extract. Thus, the study suggested Couroupita guianensis mediated green synthesis of AgNPs as an efficient and eco-friendly approach with substantial advantages over the conventional methods. The process could be further scaled-up for mass production and wider applications of AgNPs.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Melisa A. Quinteros ◽  
Ivana M. Aiassa Martínez ◽  
Pablo R. Dalmasso ◽  
Paulina L. Páez

Currently, the biosynthesis of silver-based nanomaterials attracts enormous attention owing to the documented antimicrobial properties of these ones. This study reports the extracellular biosynthesis of silver nanoparticles (Ag-NPs) using aPseudomonas aeruginosastrain from a reference culture collection. A greenish culture supernatant ofP. aeruginosaincubated at 37°C with a silver nitrate solution for 24 h changed to a yellowish brown color, indicating the formation of Ag-NPs, which was confirmed by UV-vis spectroscopy, transmission electron microscopy, and X-ray diffraction. TEM analysis showed spherical and pseudospherical nanoparticles with a distributed size mainly between 25 and 45 nm, and the XRD pattern revealed the crystalline nature of Ag-NPs. Also it provides an evaluation of the antimicrobial activity of the biosynthesized Ag-NPs against human pathogenic and opportunistic microorganisms, namely,Staphylococcus aureus,Staphylococcus epidermidis,Enterococcus faecalis,Proteus mirabilis,Acinetobacter baumannii,Escherichia coli,P. aeruginosa, andKlebsiella pneumonia. Ag-NPs were found to be bioactive at picomolar concentration levels showing bactericidal effects against both Gram-positive and Gram-negative bacterial strains. This work demonstrates the first helpful use of biosynthesized Ag-NPs as broad spectrum bactericidal agents for clinical strains of pathogenic multidrug-resistant bacteria such as methicillin-resistantS. aureus,A. baumannii, andE. coli. In addition, these Ag-NPs showed negligible cytotoxic effect in human neutrophils suggesting low toxicity to the host.


Author(s):  
S. Chaitanya Kumari ◽  
P. Naga Padma ◽  
K. Anuradha

The demand for increasing the shelf life of fresh food as well as the need for protecting the food against foodborne infections warrant the demand for increasing the shelf life of fresh food. The incorporation of nanoparticles into the packaging material can enhance the preservation of perishable foods. Silver nanoparticles (AgNPs), in particular, have antibacterial, anti-mold, anti-yeast, and anti-viral activities can be embedded into the biodegradable packaging materials for this purpose. This study focuses on antimicrobial packaging materials for food by mixing the extracts of different plants with silver nitrate and depositing this mixture as a layer on the blotting papers, which are thick sheets of paper made of cellulose. Because the blotting papers are highly absorbent and porous, silver nitrate solution along with the plant extracts can be easily applied and allowed for in situ synthesis of AgNPs. Subsequently, these papers were analyzed and characterized using scanning electron microscopy, transmission electron microscopy, atomic absorption spectroscopy, and energy dispersive X-ray analysis. The coated paper exhibited good antibacterial activity against Escherichia coli and Staphylococcus aureus. Furthermore, the coated paper when used as a packaging material for tomatoes and coriander leaf, the shelf life was extended to about 30 days and 15 days respectively. The prepared cost-effective silver packing material can be used in food packaging for various perishable foods.


2021 ◽  
Vol 51 (12) ◽  
Author(s):  
Patrícia Érica Fernandes ◽  
Roberta Barbosa Teodoro Alves ◽  
Natan de Jesus Pimentel-Filho ◽  
João Paulo Natalino de Sá ◽  
Hilário Cuquetto Mantovani ◽  
...  

ABSTRACT: Biocides and/or antibiotics used in subinhibitory concentrations can promote the development of adaptive resistance or even cross-resistance in microorganisms. However, studies on these responses following silver treatments are scarce in the literature. Silver-based compounds, including silver nanoparticles (Ag-NPs), can be an alternative in the prevention and treatment of bovine mastitis. Thus, this research evaluated the effect of subinhibitory dosages of Ag-NPs and Ag+ ions from silver nitrate (AgNO3) on Staphylococcus aureus and Escherichia coli isolated from milk of cows with mastitis. Ag-NPs were synthesized by chemical reduction using AgNO3 and sodium citrate and the minimum inhibitory concentration (MIC) of Ag-NPs and Ag+ ions on the mastitis pathogens were determined. Isolates were exposed to subinhibitory concentrations of Ag-NPs or AgNO3 for 10 consecutive days to verify the development of adaptive resistance evaluated by changes in the MIC values. The development of cross-resistance with antibiotics was also studied, being verified by comparing the sensitivity profile of treated cells with non-treated cells. AgNO3 was more effective against all isolates. There was no change in the MIC values or in the antibiotic sensitivity profile for both bacteria following consecutive exposure to subinhibitory dosages of Ag-NPs or AgNO3, indicating that silver was not able to select adaptive resistance or cross resistance to the tested antibiotics. The potential of silver presented by these results is favorable to the continuity of studies aiming to elaborate silver-based therapies for the treatment of bovine mastitis.


2016 ◽  
Vol 5 (2) ◽  
Author(s):  
Kaushik Roy ◽  
Chandan K. Sarkar ◽  
Chandan K. Ghosh

AbstractThis study reports a single-step, fast and eco-friendly procedure for preparing silver nanoparticles from silver nitrate solution using fruit extract of


Sign in / Sign up

Export Citation Format

Share Document