scholarly journals Simple Fabrication of BiVO4 Thin Films Synthesized by Modified SILAR Method: Effect of Film Thickness

Author(s):  
chaewon Seong ◽  
Pratik Mane ◽  
Hyojung Bae ◽  
seungwon Lee ◽  
Soon Hyung Kang ◽  
...  

Abstract In this study, BiVO4 photoanodes were synthesized using a simple and inexpensive modified successive ionic layer adsorption and reaction (SILAR) method. In particular, the effect of the number of SILAR cycles on the photoelectrochemical (PEC) properties of BiVO4 was evaluated. Scanning electron microscopy analysis revealed the porous surface morphology of the BiVO4 thin layers with irregularly shaped particles formed on the surface of fluorine-doped tin oxide substrates. The crystal structure of BiVO4 was confirmed using X-ray diffraction analysis. The ultraviolet–visible spectrophotometry results indicated that the bandgap energy of the deposited film was approximately 2.4 eV. In addition, the PEC properties of the BiVO4 photoanodes using potentiostat were analyzed. The linear sweep voltammetry curves revealed that the photocurrent density of the BiVO4 samples increased with the increasing number of m-SILAR cycles, and a maximum photocurrent density of approximately 0.83 mA/cm2 was achieved for the BVO-35. These results suggest that an efficient photoelectrode for compact PEC cells can serve as a basis for development.

2015 ◽  
Vol 9 (3) ◽  
pp. 2461-2469
Author(s):  
S. R. Gosavi ◽  
K. B. Chaudhari

CdS thin films were deposited on glass substrates by using successive ionic layer adsorption and reaction (SILAR) method at room temperature. The effect of SILAR growth cycles on structural, morphological, optical and electrical properties of the films has been studied.  The thickness of the deposited film is measured by employing weight difference method. The X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) studies showed that all the films exhibit polycrystalline nature and are covered well with glass substrates. The values of average crystallite size were found to be 53 nm, 58 nm, 63 nm and 71 nm corresponding to the thin films deposited with 30, 40, 50 and 60 SILAR growth cycles respectively. From the UV–VIS spectra of the deposited thin films, it was seen that both the absorption properties and energy bandgap of the films changes with increasing number of SILAR growth cycles. A decrease of electrical resistivity has been observed with increasing SILAR growth cycle. 


2016 ◽  
Vol 34 (1) ◽  
pp. 204-211 ◽  
Author(s):  
Vishal V. Burungale ◽  
Rupesh S. Devan ◽  
Sachin A. Pawar ◽  
Namdev S. Harale ◽  
Vithoba L. Patil ◽  
...  

AbstractRapid NO2 gas sensor has been developed based on PbS nanoparticulate thin films synthesized by Successive Ionic Layer Adsorption and Reaction (SILAR) method at different precursor concentrations. The structural and morphological properties were investigated by means of X-ray diffraction and field emission scanning electron microscope. NO2 gas sensing properties of PbS thin films deposited at different concentrations were tested. PbS film with 0.25 M precursor concentration showed the highest sensitivity. In order to optimize the operating temperature, the sensitivity of the sensor to 50 ppm NO2 gas was measured at different operating temperatures, from 50 to 200 °C. The gas sensitivity increased with an increase in operating temperature and achieved the maximum value at 150 °C, followed by a decrease in sensitivity with further increase of the operating temperature. The sensitivity was about 35 % for 50 ppm NO2 at 150 °C with rapid response time of 6 s. T90 and T10 recovery time was 97 s at this gas concentration.


2020 ◽  
Vol 20 (10) ◽  
pp. 6235-6244 ◽  
Author(s):  
A. Murugan ◽  
V. Siva ◽  
A. Shameem ◽  
S. Asath Bahadur

The Cu2ZnSnS4 (CZTS) thin films have been prepared at different deposition cycles, deposited on a glass substrate by successive ionic layer adsorption and reaction (SILAR) method followed by the annealing process at elevated temperature. The investigations on the films have been carried out to understand and confirm its structure, functional group present, crystalline morphology, optical and electrochemical behavior. The powder X-ray diffraction patterns recorded indicate that the deposited films are formed in the tetragonal structure. Other parameters like grain size, dislocation density, and microstrain are also calculated. The uniform surface of the films with spherical shaped morphology has been observed by Scanning Electron Microscopy, and the elemental compositions have been confirmed by EDAX. Electrochemical behavior such as cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge–discharge analysis have been carried out by electrochemical workstation. The modified electrode exhibits maximum specific capacitance value as 416 F/g for a pure sample. Optical studies have shown that the band gaps are estimated between 1.40 eV and 1.57 eV.


2012 ◽  
Vol 534 ◽  
pp. 86-88
Author(s):  
Shi Mei Yang ◽  
Shao Yun Shan ◽  
Qing Ming Jia ◽  
Ting Wei Hu ◽  
Li Hong Jiang ◽  
...  

Using urea and calcium chloride as precipitator and calcium source, fibrous CaCO3 precursors were prepared using hydrothermal method, then fibrous CaO sorbent was obtained by calcination. The influence of hydrothermal temperature on CO2 absorption properties was discussed. X-ray diffraction analysis showed that pure CaCO3 phase with aragonite and calcite crystal forms was obtained. Scanning electron microscopy analysis showed that the resultant CaO sorbent presented a fibrous microstructure, which inherited the morphologies of CaCO3. The absorption capacity of the resultant CaO sorbent reached 59.86%, being 76% of theoretical absorption capacity. In addition, compared with the CaO sorbent from analytical pure CaCO3, the obtained fibrous CaO-sorbent have the better cyclic absorption properties.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Bünyamin Şahin

Nanostructured cadmium oxide (CdO) films were fabricated on glass substrates from alkaline baths containing saccharin as an additive by a successive ionic layer adsorption and reaction (SILAR) method. The effects of saccharin concentration in the bath on the structural, morphological, and optical properties were studied by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), photoluminescence, and Raman spectroscopy. The analyses showed that the surface morphologies, XRD peak intensities, Raman spectroscopy, and photoluminescence properties of CdO films changed with saccharin concentration. From the results, it can be said that morphological characteristic and optical properties of the films could be calibrated by adding various saccharin percentages in the growth bath.


2017 ◽  
Vol 75 (6) ◽  
pp. 1421-1430 ◽  
Author(s):  
Martha Purnachander Rao ◽  
Jerry J. Wu ◽  
Abdullah M. Asiri ◽  
Sambandam Anandan

Straw-sheaf-like CuO nanostructures were fruitfully synthesized using a chemical precipitation approach for the photocatalytic degradation assessment of tartrazine. Phase identification, composition, and morphological outlook of prepared CuO nanostructures were established by X-ray diffraction and scanning electron microscopy analysis. The photocatalytic performance of the synthesized CuO nanostructures was appraised in the presence of visible light and the possible intermediates formed during the photocatalytic degradation were analyzed by gas chromatography–mass spectrometry. A suitable degradation pathway has also been proposed.


2015 ◽  
Vol 68 (6) ◽  
pp. 981 ◽  
Author(s):  
Sara Zamanian ◽  
Ali Nemati Kharat

The catalytic hydroalkoxylation of α,β-unsaturated esters, nitriles, and ethers with aliphatic and aromatic alcohols over pollucite using thermal and microwave-assisted methods was investigated. To study the effect of the alcohol structures on the mechanism of the hydroalkoxylation reaction, different alcohols, such as methanol to butanol, cyclohexanol, phenol, and 2-ethylhexanol were used. The activities of pollucite, in contrast to other basic solids, were scarcely affected by the presence of air and moisture. The correlation between alcohol acidity and reaction activity is discussed. The prepared pollucite was characterized by X‐ray diffraction, volumetric nitrogen adsorption surface area analysis, and CO2 temperature‐programmed desorption. Scanning electron microscopy analysis revealed that the size of the modified nano catalyst particles was under 40 nm.


Nanocrystalline CuCo2Se4 thin film have been deposited on over the micro slide by simplest route of successive ionic layer adsorption and reaction(SILAR) method. The CuCo2Se4 film was understand by Structural, morphological, and optical. The X-ray diffraction analyses confirm the formation of Cubic crystalline structure, than calculated grain size, dislocation density, and microstrain. The morphology of the film is homogeneous and agglomerated surface. The annealed CuCo2Se4 film are shows good optical absorption and the optical energy band gap energy is 1.90 eV, thus the suitable candidates for dye-Sensitized solar cell(DSSCs) application.


Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 188
Author(s):  
Lucian C. Staicu ◽  
Tomasz Bajda ◽  
Lukasz Drewniak ◽  
Laurent Charlet

Coal-fired power facilities generate a polymetallic effluent (Flue Gas Desulfurization—FGD) rich in sulfate. FGD effluents may be considered an important secondary resource. This paper investigates the recovery of sulfate as barite (BaSO4), a mineral with high commercial value and a critical raw material. Using equimolar BaCl2, >99% desulfurization of an FGD effluent produced by a coal-fired power plant operating in central Poland was achieved, yielding up to 16.5 kg high purity barite m−3. The recovered barite was characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric (TGA), scanning electron microscopy analysis (SEM), surface properties (PZC), density, and chemical stability (TCLP), and was compared with a commercial reference material. Barite recovery also led to the reduction in concentration of Al (86%), Cu (52%), K (69%), Mo (62%), Se (40%), Sr (91%), and U (75%) initially present in the FGD effluent. TCLP results indicate the entrapment and the stabilization of ~70% Se and ~90% Al in the barite structure. Based on this dataset, an in-depth characterization of the recovered barite is presented, and the removal mechanism of the elements is discussed. The study also provides a preliminary cost benefit analysis of the process. To our best knowledge, this is the first work showing barite recovery and metal removal from FGD effluents using a one-step process.


Sign in / Sign up

Export Citation Format

Share Document