scholarly journals Research on Personalized Minority Tourist Route Recommendation Algorithm Based on Deep Learning

2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Guanglu Liu

With the improvement of living standards, more and more people are pursuing personalized routes. This paper uses personalized mining of interest points of ethnic minority tourism demand groups, extracts customer data features in social networks, and constructs data features of interesting topic factors, geographic location factors, and user access frequency factors, using LDA topic models and matrix decomposition models to perform feature vectorization processing on user sign-in records and build deep learning recommendation model (DLM). Using this model to compare with the traditional recommendation model and the recommendation model of a single data feature module, the experimental results show the following: (1) The fitting error of DLM recommendation results is significantly reduced, and its recommendation accuracy rate is 50% higher than that of traditional recommendation algorithms. The experimental results show that the DLM constructed in this paper has good learning and training performance, and the recommendation effect is good. (2) In this method, the performance of the DLM is significantly higher than other POI recommendation methods in terms of the accuracy or recall rate of the recommendation algorithm. Among them, the accuracy rates of the top five, top ten, and top twenty recommended POIs are increased by 9.9%, 7.4%, and 7%, respectively, and the recall rate is increased by 4.2%, 7.5%, and 14.4%, respectively.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yuan Feng ◽  
Weixian Huang

The recommendation system is an active, personalized, and real-time technology platform proposed in the 1990s to solve the problem of information overload. The recommendation system can constantly adjust the recommendation results according to the real-time behaviors of users. In other words, if the user’s interest changes, the recommendation system can present different information to the user. Therefore, the recommendation system is the best way to solve the problem of information overload in entrepreneurial projects. Based on the ConvMF algorithm, this paper proposes an entrepreneurial project recommendation algorithm based on a deep neural network and matrix decomposition. A deep neural network was established for the extraction of the hidden features of entrepreneurial projects, and a convolution neural network was used to process the text description information of entrepreneurial projects. One-hot coding was used to process the regional characteristics and financing round characteristics of entrepreneurial projects, and word embedding was used to process the label features of entrepreneurial projects. The implicit features of users are extracted from the user’s rating matrix using matrix decomposition technology. Finally, recommendations are made according to the implicit characteristics of users and the items learned.


Author(s):  
Zhixian Liu ◽  
Qingfeng Chen ◽  
Wei Lan ◽  
Jiahai Liang ◽  
Yiping Pheobe Chen ◽  
...  

: Traditional network-based computational methods have shown good results in drug analysis and prediction. However, these methods are time consuming and lack universality, and it is difficult to exploit the auxiliary information of nodes and edges. Network embedding provides a promising way for alleviating the above problems by transforming network into a low-dimensional space while preserving network structure and auxiliary information. This thus facilitates the application of machine learning algorithms for subsequent processing. Network embedding has been introduced into drug analysis and prediction in the last few years, and has shown superior performance over traditional methods. However, there is no systematic review of this issue. This article offers a comprehensive survey of the primary network embedding methods and their applications in drug analysis and prediction. The network embedding technologies applied in homogeneous network and heterogeneous network are investigated and compared, including matrix decomposition, random walk, and deep learning. Especially, the Graph neural network (GNN) methods in deep learning are highlighted. Further, the applications of network embedding in drug similarity estimation, drug-target interaction prediction, adverse drug reactions prediction, protein function and therapeutic peptides prediction are discussed. Several future potential research directions are also discussed.


2019 ◽  
Vol 277 ◽  
pp. 02024 ◽  
Author(s):  
Lincan Li ◽  
Tong Jia ◽  
Tianqi Meng ◽  
Yizhe Liu

In this paper, an accurate two-stage deep learning method is proposed to detect vulnerable plaques in ultrasonic images of cardiovascular. Firstly, a Fully Convonutional Neural Network (FCN) named U-Net is used to segment the original Intravascular Optical Coherence Tomography (IVOCT) cardiovascular images. We experiment on different threshold values to find the best threshold for removing noise and background in the original images. Secondly, a modified Faster RCNN is adopted to do precise detection. The modified Faster R-CNN utilize six-scale anchors (122,162,322,642,1282,2562) instead of the conventional one scale or three scale approaches. First, we present three problems in cardiovascular vulnerable plaque diagnosis, then we demonstrate how our method solve these problems. The proposed method in this paper apply deep convolutional neural networks to the whole diagnostic procedure. Test results show the Recall rate, Precision rate, IoU (Intersection-over-Union) rate and Total score are 0.94, 0.885, 0.913 and 0.913 respectively, higher than the 1st team of CCCV2017 Cardiovascular OCT Vulnerable Plaque Detection Challenge. AP of the designed Faster RCNN is 83.4%, higher than conventional approaches which use one-scale or three-scale anchors. These results demonstrate the superior performance of our proposed method and the power of deep learning approaches in diagnose cardiovascular vulnerable plaques.


2021 ◽  
Vol 11 (2) ◽  
pp. 851
Author(s):  
Wei-Liang Ou ◽  
Tzu-Ling Kuo ◽  
Chin-Chieh Chang ◽  
Chih-Peng Fan

In this study, for the application of visible-light wearable eye trackers, a pupil tracking methodology based on deep-learning technology is developed. By applying deep-learning object detection technology based on the You Only Look Once (YOLO) model, the proposed pupil tracking method can effectively estimate and predict the center of the pupil in the visible-light mode. By using the developed YOLOv3-tiny-based model to test the pupil tracking performance, the detection accuracy is as high as 80%, and the recall rate is close to 83%. In addition, the average visible-light pupil tracking errors of the proposed YOLO-based deep-learning design are smaller than 2 pixels for the training mode and 5 pixels for the cross-person test, which are much smaller than those of the previous ellipse fitting design without using deep-learning technology under the same visible-light conditions. After the combination of calibration process, the average gaze tracking errors by the proposed YOLOv3-tiny-based pupil tracking models are smaller than 2.9 and 3.5 degrees at the training and testing modes, respectively, and the proposed visible-light wearable gaze tracking system performs up to 20 frames per second (FPS) on the GPU-based software embedded platform.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Changyong Li ◽  
Yongxian Fan ◽  
Xiaodong Cai

Abstract Background With the development of deep learning (DL), more and more methods based on deep learning are proposed and achieve state-of-the-art performance in biomedical image segmentation. However, these methods are usually complex and require the support of powerful computing resources. According to the actual situation, it is impractical that we use huge computing resources in clinical situations. Thus, it is significant to develop accurate DL based biomedical image segmentation methods which depend on resources-constraint computing. Results A lightweight and multiscale network called PyConvU-Net is proposed to potentially work with low-resources computing. Through strictly controlled experiments, PyConvU-Net predictions have a good performance on three biomedical image segmentation tasks with the fewest parameters. Conclusions Our experimental results preliminarily demonstrate the potential of proposed PyConvU-Net in biomedical image segmentation with resources-constraint computing.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2595
Author(s):  
Balakrishnan Ramalingam ◽  
Abdullah Aamir Hayat ◽  
Mohan Rajesh Elara ◽  
Braulio Félix Gómez ◽  
Lim Yi ◽  
...  

The pavement inspection task, which mainly includes crack and garbage detection, is essential and carried out frequently. The human-based or dedicated system approach for inspection can be easily carried out by integrating with the pavement sweeping machines. This work proposes a deep learning-based pavement inspection framework for self-reconfigurable robot named Panthera. Semantic segmentation framework SegNet was adopted to segment the pavement region from other objects. Deep Convolutional Neural Network (DCNN) based object detection is used to detect and localize pavement defects and garbage. Furthermore, Mobile Mapping System (MMS) was adopted for the geotagging of the defects. The proposed system was implemented and tested with the Panthera robot having NVIDIA GPU cards. The experimental results showed that the proposed technique identifies the pavement defects and litters or garbage detection with high accuracy. The experimental results on the crack and garbage detection are presented. It is found that the proposed technique is suitable for deployment in real-time for garbage detection and, eventually, sweeping or cleaning tasks.


2013 ◽  
Vol 765-767 ◽  
pp. 630-633 ◽  
Author(s):  
Chong Lin Zheng ◽  
Kuang Rong Hao ◽  
Yong Sheng Ding

Collaborative filtering recommendation algorithm is the most successful technology for recommendation systems. However, traditional collaborative filtering recommendation algorithm does not consider the change of time information. For this problem,this paper improve the algorithm with two new methods:Predict score incorporated with time information in order to reflect the user interest change; Recommend according to scores by adding the weight information determined by the item life cycle. Experimental results show that the proposed algorithm outperforms the traditional item in accuracy.


2021 ◽  
pp. 1-11
Author(s):  
Oscar Herrera ◽  
Belém Priego

Traditionally, a few activation functions have been considered in neural networks, including bounded functions such as threshold, sigmoidal and hyperbolic-tangent, as well as unbounded ReLU, GELU, and Soft-plus, among other functions for deep learning, but the search for new activation functions still being an open research area. In this paper, wavelets are reconsidered as activation functions in neural networks and the performance of Gaussian family wavelets (first, second and third derivatives) are studied together with other functions available in Keras-Tensorflow. Experimental results show how the combination of these activation functions can improve the performance and supports the idea of extending the list of activation functions to wavelets which can be available in high performance platforms.


Author(s):  
Yu-Xiang Zhao ◽  
Yi-Zeng Hsieh ◽  
Shih-Syun Lin

With advances in technology, photo booths equipped with automatic capturing systems have gradually replaced the identification (ID) photo service provided by photography studios, thereby enabling consumers to save a considerable amount of time and money. Common automatic capturing systems employ text and voice instructions to guide users in capturing their ID photos; however, the capturing results may not conform to ID photo specifications. To address this issue, this study proposes an ID photo capturing algorithm that can automatically detect facial contours and adjust the size of captured images. The authors adopted a deep learning method (You Only Look Once) to detect the face and applied a semi-automatic annotation technique of facial landmarks to find the lip and chin regions from the facial region. In the experiments, subjects were seated at various distances and heights for testing the performance of the proposed algorithm. The experimental results show that the proposed algorithm can effectively and accurately capture ID photos that satisfy the required specifications.


Author(s):  
Ryan Lagerquist ◽  
Jebb Q. Stewart ◽  
Imme Ebert-Uphoff ◽  
Christina Kumler

AbstractPredicting the timing and location of thunderstorms (“convection”) allows for preventive actions that can save both lives and property. We have applied U-nets, a deep-learning-based type of neural network, to forecast convection on a grid at lead times up to 120 minutes. The goal is to make skillful forecasts with only present and past satellite data as predictors. Specifically, predictors are multispectral brightness-temperature images from the Himawari-8 satellite, while targets (ground truth) are provided by weather radars in Taiwan. U-nets are becoming popular in atmospheric science due to their advantages for gridded prediction. Furthermore, we use three novel approaches to advance U-nets in atmospheric science. First, we compare three architectures – vanilla, temporal, and U-net++ – and find that vanilla U-nets are best for this task. Second, we train U-nets with the fractions skill score, which is spatially aware, as the loss function. Third, because we do not have adequate ground truth over the full Himawari-8 domain, we train the U-nets with small radar-centered patches, then apply trained U-nets to the full domain. Also, we find that the best predictions are given by U-nets trained with satellite data from multiple lag times, not only the present. We evaluate U-nets in detail – by time of day, month, and geographic location – and compare to persistence models. The U-nets outperform persistence at lead times ≥ 60 minutes, and at all lead times the U-nets provide a more realistic climatology than persistence. Our code is available publicly.


Sign in / Sign up

Export Citation Format

Share Document