cortical malformation
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 22)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Julia Wallmeier ◽  
Diana Bracht ◽  
Hessa S. Alsaif ◽  
Gerard W. Dougherty ◽  
Heike Olbrich ◽  
...  

2021 ◽  
pp. jmedgenet-2021-107783
Author(s):  
Simone Gana ◽  
Antonella Casella ◽  
Sara Cociglio ◽  
Elena Tartara ◽  
Elisa Rognone ◽  
...  

The primary anatomical defect leading to periventricular nodular heterotopia occurs within the neural progenitors along the neuroepithelial lining of the lateral ventricles and results from a defect in the initiation of neuronal migration, following disruption of the neuroependyma and impaired neuronal motility. Growing evidence indicates that the FLNA-dependent actin dynamics and regulation of vesicle formation and trafficking by activation of ADP-ribosylation factors (ARFs) can play an important role in this cortical malformation. We report the first inherited variant of ARF1 in a girl with intellectual disability and periventricular nodular heterotopia who inherited the variant from the father with previously undiagnosed single nodular heterotopia and mild clinical expression. Additionally, both patients presented some features suggestive of hypohidrotic ectodermal dysplasia. These clinical features showed similarities to those of three previously reported cases with ARF1 missense variants, confirming that haploinsufficiency of this gene causes a recognisable neurological disorder with abnormal neuronal migration and variable clinical expressivity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaohang Qian ◽  
Xiaoying Liu ◽  
Zeyu Zhu ◽  
Shige Wang ◽  
Xiaoxuan Song ◽  
...  

Occipital cortical malformation (OCCM) is a disease caused by malformations of cortical development characterized by polymicrogyria and pachygyria of the occipital lobes and childhood-onset seizures. The recessive or complex heterozygous variants of the LAMC3 gene are identified as the cause of OCCM. In the present study, we identified novel complex heterozygous variants (c.470G > A and c.4030 + 1G > A) of the LAMC3 gene in a Chinese female with childhood-onset seizures. Cranial magnetic resonance imaging was normal. Functional experiments confirmed that both variant sites caused premature truncation of the laminin γ3 chain. Bioinformatics analysis predicted 10 genes interacted with LAMC3 with an interaction score of 0.4 (P value = 1.0e–16). The proteins encoded by these genes were mainly located in the basement membrane and extracellular matrix component. Furthermore, the biological processes and molecular functions from gene ontology analysis indicated that laminin γ3 chain and related proteins played an important role in structural support and cellular processes through protein-containing complex binding and signaling receptor binding. KEGG pathway enrichment predicted that the LAMC3 gene variant was most likely to participate in the occurrence and development of OCCM through extracellular matrix receptor interaction and PI3K-Akt signaling pathway.


2021 ◽  
Vol 11 (6) ◽  
pp. 793
Author(s):  
Chiara Pepi ◽  
Luca de Palma ◽  
Marina Trivisano ◽  
Nicola Pietrafusa ◽  
Francesca Romana Lepri ◽  
...  

The rare nevus sebaceous (NS) syndrome (NSS) includes cortical malformations and drug-resistant epilepsy. Somatic RAS-pathway genetic variants are pathogenetic in NS, but not yet described within the brain of patients with NSS. We report on a 5-year-old boy with mild psychomotor delay. A brown-yellow linear skin lesion suggestive of NS in the left temporo-occipital area was evident at birth. Epileptic spasms presented at aged six months. EEG showed continuous left temporo-occipital epileptiform abnormalities. Brain MRI revealed a similarly located diffuse cortical malformation with temporal pole volume reduction and a small hippocampus. We performed a left temporo-occipital resection with histopathological diagnosis of focal cortical dysplasia type Ia in the occipital region and hippocampal sclerosis type 1. Three years after surgery, he is seizure-and drug-free (Engel class Ia) and showed cognitive improvement. Genetic examination of brain and skin specimens revealed the c.35G > T (p.Gly12Val) KRAS somatic missense mutation. Literature review suggests epilepsy surgery in patients with NSS is highly efficacious, with 73% probability of seizure freedom. The few histological analyses reported evidenced disorganized cortex, occasionally with cytomegalic neurons. This is the first reported association of a KRAS genetic variant with cortical malformations associated with epilepsy, and suggests a possible genetic substrate for hippocampal sclerosis.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Eva On-Chai Lau ◽  
Devid Damiani ◽  
Georges Chehade ◽  
Nuria Ruiz-Reig ◽  
Rana Saade ◽  
...  

Diaphanous (DIAPH) 3 is a member of the formin proteins that have the capacity to nucleate and elongate actin filaments and therefore, to remodel the cytoskeleton. DIAPH3 is essential for cytokinesis as its dysfunction impairs the contractile ring and produces multinucleated cells. Here, we report that DIAPH3 localizes at the centrosome during mitosis and regulates the assembly and bi-polarity of the mitotic spindle. DIAPH3-deficient cells display disorganized cytoskeleton, and multipolar spindles. DIAPH3-deficiency disrupts the expression and/or stability of several proteins including the kinetochore-associated protein SPAG5. DIAPH3 and SPAG5 have similar expression patterns in the developing brain and overlapping subcellular localization during mitosis. Knockdown of SPAG5 phenocopies the DIAPH3 deficiency, whereas its overexpression rescues the DIAHP3 knockdown phenotype. Conditional inactivation of Diaph3 in mouse cerebral cortex profoundly disrupts neurogenesis depleting cortical progenitors and neurons; and leading to cortical malformation and autistic-like behavior. Our data uncover uncharacterized functions of DIAPH3 and provide evidence that this protein belongs to a molecular toolbox that links microtubule dynamics during mitosis to aneuploidy, cell death, fate determination defects, and cortical malformation.


Neuroscience ◽  
2021 ◽  
Vol 457 ◽  
pp. 114-124
Author(s):  
Gabriela Lazzarotto ◽  
Querusche Klippel Zanona ◽  
Kamila Cagliari Zenki ◽  
Maria Elisa Calcagnotto

2021 ◽  
Vol 7 (13) ◽  
pp. eabd2368
Author(s):  
Satoko Miyatake ◽  
Mitsuhiro Kato ◽  
Takuma Kumamoto ◽  
Tomonori Hirose ◽  
Eriko Koshimizu ◽  
...  

Polymicrogyria is a common malformation of cortical development whose etiology remains elusive. We conducted whole-exome sequencing for 124 patients with polymicrogyria and identified de novo ATP1A3 variants in eight patients. Mutated ATP1A3 causes functional brain diseases, including alternating hemiplegia of childhood (AHC), rapid-onset dystonia parkinsonism (RDP), and cerebellar ataxia, areflexia, pes cavus, optic nerve atrophy, and sensorineural deafness (CAPOS). However, our patients showed no clinical features of AHC, RDP, or CAPOS and had a completely different phenotype: a severe form of polymicrogyria with epilepsy and developmental delay. Detected variants had different locations in ATP1A3 and different functional properties compared with AHC-, RDP-, or CAPOS-associated variants. In the developing cerebral cortex of mice, radial neuronal migration was impaired in neurons overexpressing the ATP1A3 variant of the most severe patients, suggesting that this variant is involved in cortical malformation pathogenesis. We propose a previously unidentified category of polymicrogyria associated with ATP1A3 abnormalities.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Naoto Nishimura ◽  
Tatsuro Kumaki ◽  
Hiroaki Murakami ◽  
Yumi Enomoto ◽  
Kaoru Katsumata ◽  
...  

AbstractVariants of GRIN1, which encodes GluN1, are associated with developmental delay, epilepsy, and cortical malformation. Here, we report a case of arthrogryposis multiplex congenita with polymicrogyria and infantile encephalopathy caused by a heterozygous variant, c.1949A>C, p.(Asn650Thr) of GRIN1, which could result in the disruption of the third transmembrane domain (M3) of GluN1. This case expands our understanding of the known phenotypes of GRIN1-related neurodevelopmental disorders.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Luisa Paul ◽  
Katrin Rupprich ◽  
Adela Della Marina ◽  
Anja Stein ◽  
Magdeldin Elgizouli ◽  
...  

Abstract Background Walker-Warburg syndrome (WWS) is a rare form of alpha-dystroglycanopathy characterized by muscular dystrophy and severe malformations of the CNS and eyes. Bi-allelic pathogenic variants in POMK are the cause of a broad spectrum of alpha-dystroglycanopathies. POMK encodes protein-O-mannose kinase, which is required for proper glycosylation and function of the dystroglycan complex and is crucial for extracellular matrix composition. Results Here, we report on male monozygotic twins with severe CNS malformations (hydrocephalus, cortical malformation, hypoplastic cerebellum, and most prominently occipital meningocele), eye malformations and highly elevated creatine kinase, indicating the clinical diagnosis of a congenital muscular dystrophy (alpha-dystroglycanopathy). Both twins were found to harbor a homozygous nonsense mutation c.640C>T, p.214* in POMK, confirming the clinical diagnosis and supporting the concept that POMK mutations can be causative of WWS. Conclusion Our combined data suggest a more important role for POMK in the pathogenesis of meningoencephalocele. Only eight different pathogenic POMK variants have been published so far, detected in eight families; only five showed the severe WWS phenotype, suggesting that POMK-associated WWS is an extremely rare disease. We expand the phenotypic and mutational spectrum of POMK-associated WWS and provide evidence of the broad phenotypic variability of POMK-associated disease.


Sign in / Sign up

Export Citation Format

Share Document