electrical force
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 1)

In this paper, a new approach for hybridizing Rough Set Quick Reduct and Relative Reduct approaches with Black Hole optimization algorithm is proposed. This algorithm is inspired of black holes. A black hole is a region of spacetime where the gravitational field is so strong that nothing— not even light— that enters this region can ever escape from it. Every black hole has a mass and charge. In this Algorithm, each solution of problem is considered as a black hole and gravity force is used for global search and the electrical force is used for local search. The proposed algorithm is compared with leading algorithms such as, Rough Set Quick Reduct, Rough Set Relative Reduct, Rough Set particle swarm optimization based Quick Reduct, Rough Set based PSO Relative Reduct, Rough Set Harmony Search based Quick Reduct, and Rough Set Harmony Search based Relative Reduct.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sotirios A. Mallios ◽  
Georgios Papangelis ◽  
George Hloupis ◽  
Athanasios Papaioannou ◽  
Vasiliki Daskalopoulou ◽  
...  

The attachment of positive and negative ions to settling spherical dust particles is studied. A novel 1D numerical model has been developed to parameterize the charging process in the presence of a large-scale electric field. The model is able to self-consistently calculate the modification of atmospheric ion densities in the presence of the dust particles, and the consequent alteration of the atmospheric electrical conductivity and the large-scale electric field. Moreover, the model estimates the acquired electrical charge on the dust particles and calculates the electrical force that is applied on them. Using observed dust size distributions, we find that the particles can acquire electrical charge in the range of 1–1,000 elementary charges depending on their size and number density. The particles become mainly negatively charged, but under specific conditions giant mode particles (larger than 50 μm radius) can be positive. Moreover, the large-scale electric field can increase up to 20 times as much as the fair weather value. However, our approach shows that the resultant electrical force is not enough to significantly influence their gravitational settling, as the ratio between the electrical force magnitude and the gravity magnitude does not exceed the value of 0.01. This indicates that the process of ion attachment alone is not sufficient to create strong electrical effects for the modification of particle dynamics. Therefore, other processes, such as the triboelectric effect and updrafts, must be included in the model to fully represent the impact of electricity on particle dynamics.


Fluids ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 200 ◽  
Author(s):  
Philip Zaleski ◽  
Shahriar Afkhami

The behavior of a conducting droplet and a dielectric droplet placed under an electric potential is analyzed. Expressions for drop height based on electrode separation and the applied voltage are found, and problem parameters associated with breakup and droplet ejection are classified. Similar to previous theoretical work, the droplet interface is restricted to an ellipse shape. However, contrary to previous work, the added complexity of the boundary condition at the electrode is taken into account. To gain insight into this problem, a two-dimensional droplet is addressed. This allows for conformal maps to be used to solve for the potential surrounding the drop, which gives the total upward electrical force on the drop that is then balanced by surface tension and gravitational forces. For the conducting case, the maximum droplet height is attained when the distance between the electrode and the drop becomes sufficiently large, in which case, the droplet can stably grow to about 2.31 times its initial height before instabilities occur. In the dielectric case, hysteresis can occur for certain values of electrode separation and relative permittivity.


Nano Letters ◽  
2015 ◽  
Vol 15 (10) ◽  
pp. 6770-6776 ◽  
Author(s):  
A. Minj ◽  
A. Cros ◽  
N. Garro ◽  
J. Colchero ◽  
T. Auzelle ◽  
...  

2015 ◽  
Vol 3 (48) ◽  
pp. 12436-12442 ◽  
Author(s):  
Jin Wang ◽  
Xiao Wang ◽  
Wen-Juan Xu ◽  
Zong-Qiong Lin ◽  
Bo Hu ◽  
...  

The electrons and holes are injected into the sterically hindered organic semiconductor film (DSFXPY, 1,6-di(spiro[fluorene-9,90-xanthene]-2-yl)pyrene) through applying controllable biases on the conductive atomic force microscopy tip.


Sign in / Sign up

Export Citation Format

Share Document