scholarly journals FULLY TRANSPARENT METAMATERIAL AMC BACKED CPW FED MONOPOLE ANTENNA FOR IOT APPLICATIONS

2021 ◽  
Vol 59 (5) ◽  
Author(s):  
Cong Danh Bui ◽  
Arpan Desai ◽  
Thi Thanh Kieu Nguyen ◽  
Truong Khang Nguyen

In this paper, a fully transparent antenna comprising of an Artificial Magnetic Conductor (AMC) backed Co-planar Waveguide (CPW) fed dual-ring monopole is presented. The monopole antenna and AMC structure achieve transparency due to the use of AgHT-8 conductive oxide and Plexiglas substrate. Measured antenna performance shows an impedance bandwidth of 5.3 – 6 GHz (12.4%) in the U-NII-1 to U-NII-4 frequency band with a peak gain of 5.7 dBi which is approximately an increase of 4.5% and 3.9 dBi, respectively, as compared to the standalone antenna. The simulation and the measurement results agree well with each other which proves the validity of the proposed design. To the best of our knowledge, the proposed antenna is the first fully transparent antenna design combining a transparent radiator and a transparent AMC structure.

2018 ◽  
Vol 10 (9) ◽  
pp. 1058-1064 ◽  
Author(s):  
Qiang Chen ◽  
Hou Zhang ◽  
Lu-Chun Yang ◽  
Xiao-Fei Zhang ◽  
Yi-Chao Zeng

AbstractThis paper investigates a wideband and low axial ratio circularly polarized (CP) antenna, which is composed of a monopole on a novel polarization rotating reflective surface (PRRS) based on a corner-truncated artificial magnetic conductor (AMC) structure. By adjusting the dimensions of truncated corner properly, the PRRS has two polarization rotation (PR) frequency points. Then, a large PR band of 18% (5.55–6.65 GHz) can be achieved with two adjacent PR frequency points coming together. The profile of the newly PRRS is only0.04λ0. With corner-truncated AMC-based PRRS loading, a measured impedance bandwidth of 1.8 GHz (5.4–7.2 GHz) and the 3 dB axial ratio bandwidth of 1 GHz (5.55–6.65 GHz) could be obtained by the monopole antenna and validated by measurements. The values of AR were well below 1 dB at most of the CP region, which show a perfect CP performance. Moreover, the proposed antenna has exhibited a large axial ratio beamwidth in both the xoz- and yoz-planes and a peak gain of 6.1 dBic within the operational bandwidth.


Circuit World ◽  
2019 ◽  
Vol 45 (4) ◽  
pp. 257-267 ◽  
Author(s):  
Jayshri Sharad Kulkarni ◽  
Raju Seenivasan

Purpose This paper aims to present a triple-band monopole antenna design of 0.2-mm thickness with an overall dimension of 21 × 8 mm2 for wireless local area network (WLAN)/worldwide interoperability for microwave access (WiMAX) multiple input and multiple output (MIMO) applications in the laptop computer. Design/methodology/approach It comprises three monopole radiating elements, namely, strip AD (inverted C), strip EG (inverted J) and strip FI (inverted U) along with two rectangular open-end tuning stubs, namely, “m” and “n” of size 1.5 × 0.9 mm2 and 1.8 × 0.9 mm2, respectively. The proposed structure is compact, cost-effective and easy to integrate inside the laptop computers. Findings This structure excites three WLAN (2.4/5.2/5.8 GHz) and three WiMAX (2.3/3.3/5.5 GHz) bands. The proposed antenna array elucidates that it has measured −10dB impedance bandwidth of 11.86 per cent (2.22-2.50) GHz in a lower band (f_l), 6.83 per cent (3.25-3.48) GHz in medium band (f_m) and 16.84 per cent (5.00-5.92) GHz in upper band (f_u). The measured gain and radiation efficiency are above 3.64dBi and 75 per cent, respectively, and isolation better than −20dB. The envelope correlation coefficient (ECC) is less than 0.004. The simulated and measured results are in good concurrence, which confirms the applicability of the proposed antenna array for MIMO applications in the laptop computer. Originality/value The proposed antenna is designed without using vias, reactive elements and matching circuits for excitation of WLAN/WiMAX bands in the laptop computers. The design also does not require any additional ground for mounting the antenna. Further, the antenna array, formed by using the same antenna design, does not need additional isolating elements and is designed in such a way that the system ground itself acts as an isolating element. The proposed antenna has a low profile and is ultra-thin, cost-effective and easy to manufacture and can be easily embedded inside the next-generation laptop computers.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Joong-Han Yoon ◽  
Young-Chul Rhee ◽  
Woo-Su Kim

A triple-band rectangular ring, open-ended monopole antenna with symmetricLstrips for wireless local area network (WLAN)/Worldwide Interoperability of Microwave Access (WiMAX) applications is proposed. The proposed antenna consists of two symmetric folded arms andLstrips. Based on the concept, a prototype of the proposed triple antenna has been designed, fabricated, and tested. The numerical and experimental results demonstrated that the proposed antenna satisfied the −10 dB impedance bandwidth requirement while simultaneously covering the WLAN and WiMAX bands. Furthermore, this paper presented and discussed the 2D radiation patterns and 3D gains according to the results of the experiment. The proposed antenna’s peak gain varied between 2.17 and 4.93 dBi, and its average gain varied between −2.97 and −0.53 dBi.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yanjie Wu ◽  
Yunliang Long

This paper presents a long-term evolution (LTE) 700 MHz band multiple-input-multiple-output (MIMO) antenna, and high isolation between the two symmetrical antenna elements is obtained without introducing extra decoupling structure. Each antenna element is a combination antenna of PIFA and a meander monopole antenna. The end of the PIFA and the meander monopole antenna are, respectively, overlapped with the 50 Ω microstrip feed line, the two overlapping areas produce additional capacitance which can be considered decoupling structures to enhance the isolation for the MIMO antenna, as well as the impedance matching of the antenna elements. The MIMO antenna is etched on FR4 PCB board with dimensions of 71 × 40 × 1.6 mm3; the edge-to-edge separation of the two antenna elements is only nearly 0.037 λat 700 MHz. Both simulation and measurement results are used to confirm the MIMO antenna performance; the operating bandwidth is 698–750 MHz withS11≤−6 dB andS21≤−23 dB.


2021 ◽  
Author(s):  
Srikanth Itapu

Abstract A Co-Planar Waveguide fed circular ultra-wide band antenna with modified ground-plane and feedline is designed on a FR4 (ϵr=4.3) substrate of thickness 0.01λ0. The proposed antenna exhibits an overall impedance bandwidth ranging from 2.99 GHz to 18.0 GHz and beyond (with S11< -10 dB). Design parameters have been optimized to achieve the UWB bandwidth. The measured radiation patterns of this antenna are omnidirectional in H- plane and bidirectional in E-plane. An extended impedance bandwidth is achieved as a result of modified feed-line. The proposed antenna can be used for medical imaging and urban IoT applications.


2020 ◽  
Vol 12 (6) ◽  
pp. 531-540 ◽  
Author(s):  
Abdullah Al-Sehemi ◽  
Ahmed Al-Ghamdi ◽  
Nikolay Dishovsky ◽  
Gabriela Atanasova ◽  
Nikolay Atanasov

AbstractA flexible broadband antenna with high radiation efficiency for the Internet of Things (IoT) applications is presented. The design is based on a U-shaped and a triangular-shaped radiator with two tuning stubs. A 50 Ω coplanar waveguide (CPW) transmission line is employed to feed the antenna. The proposed antenna is fabricated on a flexible substrate from a composite synthesized by mixing natural rubber with SiO2 as a filler. The radiating elements, along with the CPW, are built using a highly conductive woven fabric. Results show that the antenna has a simulated and measured impedance bandwidth of 0.856–2.513 GHz and covers the most commonly used wireless communication standards and technologies for IoT applications. The radiation efficiency of the antenna reaches over 75% throughout the operating frequency band with satisfactory radiation patterns and gain. The flexible antenna was also tested under bending conditions. The presented results demonstrate that bending has a minor effect on the antenna performance within the target frequency range. The measured results show a good agreement with simulations.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1247
Author(s):  
Heijun Jeong ◽  
Yeonju Kim ◽  
Manos M. Tentzeris ◽  
Sungjoon Lim

This paper proposes a gain-enhanced metamaterial (MM) absorber-loaded monopole antenna that reduces both radar cross-section and back radiation. To demonstrate the proposed idea, we designed a wire monopole antenna and an MM absorber. The MM absorber comprised lumped elements of subwavelength unit cells and achieved 90% absorbance bandwidth from 2.42–2.65 GHz. For low-profile configurations, the MM absorber was loaded parallel to and 10 mm from the monopole antenna, corresponding to 0.09 λ0 at 2.7 GHz. The monopole antenna resonated at 2.7 GHz with a 3.71 dBi peak gain and 2.65 GHz and 6.46 dBi peak gain, before and after loading the MM absorber, respectively. Therefore, including the MM absorber increased peak gain by 2.7 dB and reduced back radiation by 15 dB. The proposed antenna radar cross-section was reduced by 2 dB compared with a monopole antenna with an artificial magnetic conductor.


Author(s):  
Naveen Jaglan ◽  
Samir Dev Gupta ◽  
Binod Kumar Kanaujia ◽  
Shweta Srivastava

Since 2002, when the Federal Communication Commission (FCC) released the bandwidth 3.1-10.6 GHz, there has been increasing interest in the use of UWB systems because of their low power consumption, low cost, precise positioning and promising candidate for short-range high-speed indoor data communications. Planar circular monopoles like designs are a good example for UWB applications due to their merits such as ease of fabrication, Acceptable radiation pattern, and large impedance bandwidth. However, some narrowband systems also operate in this frequency like WiMAX, WLAN and X-Band satellite downlink communication band etc. cause interference in UWB range. To overcome any interference with these systems it is desirable to design UWB antenna with band notches. However, most techniques of obtaining notches uses antenna design specific approaches therefore EBG structures can be used to obtain single and multi-notch antennas. The technique used for obtaining notches using EBG is antenna design independent and can be applied to most of the antennas without compromising antenna performance.


Author(s):  
Kalyan Mondal

In this work, a broadband high gain frequency selective surface (FSS)-based microstrip patch antenna is proposed. The dimensions of the microstrip antenna and proposed FSS are [Formula: see text] and [Formula: see text]. A broadband high gain reference antenna has been selected to improve antenna performance. The reference antenna offers 1.2[Formula: see text]GHz bandwidth with 6.03[Formula: see text]dBi peak gain. Some modifications have been done on the patch and ground plane to enhance the bandwidth and gain. The impedance bandwidth of 7.70[Formula: see text]GHz (3.42–11.12[Formula: see text]GHz) with 4.9 dBi peak gain is achieved by the microstrip antenna without FSS. The antenna performance is improved by using FSS beneath the antenna structure. The maximum impedance bandwidth of 7.70[Formula: see text]GHz (3.32–11.02[Formula: see text]GHz) and peak gain of 8.6[Formula: see text]dBi are achieved by the proposed antenna with FSS. Maximum co- and cross-polarization differences are 21[Formula: see text]dB. The simulation and measurement have been done using Ansoft Designer software and vector network analyzer. The measured results are in good parity with the simulated one.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
M. Jusoh ◽  
M. F. Jamlos ◽  
M. R. Kamarudin ◽  
T. Sabapathy

A novel reconfigurable compact patch array antenna for directional and broadside application is proposed. The presented antenna has successfully been able to function for directional beam at 320° or 35° and divisive broadside beam at 43° and 330°. This is realized in the unique form of aperture coupled spiral feeding technique and positioning of the radiating elements at 0°, 90,° and 180°. The switchable feature is effectively performed by the configuration of three PIN diodes. All PIN diodes are positioned at the specific location of the aperture coupled structure. It is discovered in simulation that the switches can be represented with a copper strip line or touchstone (TS) block . The proposed antenna design operates at 2.37 GHz to 2.41 GHz and has a maximum gain of 6.4 dB and efficiency of 85.97%. Such antenna produces a broadside HPBW with a wider bandwidth covering from −90° to 90° compared to the normal microstrip antenna which could only provide HPBW of −50° to 50°. Moreover, the proposed antenna has small physical dimension of 100 mm by 100 mm. The simulation and measurement results have successfully exhibited the idea of the presented antenna performance. Therefore, the antenna is sufficiently competent in the smart WiMAX antenna application.


Sign in / Sign up

Export Citation Format

Share Document