flower symmetry
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 8)

H-INDEX

11
(FIVE YEARS 2)

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1994
Author(s):  
Elizabeth Ramage ◽  
Valerie L. Soza ◽  
Jing Yi ◽  
Haley Deal ◽  
Vaidehi Chudgar ◽  
...  

Bilaterally symmetric flowers have evolved over a hundred times in angiosperms, yet orthologs of the transcription factors CYCLOIDEA (CYC), RADIALIS (RAD), and DIVARICATA (DIV) are repeatedly implicated in floral symmetry changes. We examined these candidate genes to elucidate the genetic underpinnings of floral symmetry changes in florally diverse Rhododendron, reconstructing gene trees and comparing gene expression across floral organs in representative species with radial and bilateral flower symmetries. Radially symmetric R. taxifolium Merr. and bilaterally symmetric R. beyerinckianum Koord. had four and five CYC orthologs, respectively, from shared tandem duplications. CYC orthologs were expressed in the longer dorsal petals and stamens and highly expressed in R. beyerinckianum pistils, whereas they were either ubiquitously expressed, lost from the genome, or weakly expressed in R. taxifolium. Both species had two RAD and DIV orthologs uniformly expressed across all floral organs. Differences in gene structure and expression of Rhododendron RAD compared to other asterids suggest that these genes may not be regulated by CYC orthologs. Our evidence supports CYC orthologs as the primary regulators of differential organ growth in Rhododendron flowers, while also suggesting certain deviations from the typical asterid gene regulatory network for flower symmetry.


2021 ◽  
Author(s):  
Siddhant Chaturvedi ◽  
Shahirina Khan ◽  
T. R. Usharani ◽  
Siddharth Tiwari

Abstract The TCP transcription factor gene family is highly conserved among the plant species. It plays a major role in the regulation of flower symmetry, cell division, development of leaf, fibre and nodule in the plants by controlling the synthesis of various plant hormones. Banana is a major staple crop in the world. However, Fusarium oxysporum f. sp. cubense (Foc) infection is a major threat to banana production. The role of TCP gene family during the Foc infection is not explored till now. Herein, a total of 27 non-redundant TCP (MaTCP) gene sequences were retrieved from the banana genome and analysed for structural characteristics, phylogenetic correlation, subcellular, and chromosomal localizations. Phylogenetic analysis showed that the MaTCP proteins were highly conserved among different species and found to be the closest relative of the Oryza sativa and Zea mays. Promoter analysis of the TCP sequences showed that the cis-acting regulatory elements are associated with various stresses, environmental and hormonal signals. The higher transcripts accumulation in developing tissues (fruit finger, leaves, and stem) than of mature tissues (peel and pulp) showed a significant role of MaTCP in banana (cv. Rasthali) growth and development. Further, higher expression of the certain MaTCPs (MaTCP2, MaTCP4, MaTCP6, MaTCP9 and MaTCP11) in Foc race 1 infected root and leaf tissues of Rasthali indicated their promising role during Fusarium infection. This study will underpin the facet of TCP transcription factors on the development of biotic (Foc) stress tolerance in banana.


2021 ◽  
Author(s):  
Andrey A. Sinjushin ◽  

The third largest angiosperm family, Leguminosae, exhibits a relatively wide range of variation in morphology of gynoecium. Some of gynoecial patterns found in this taxon are of special interest, as they resemble ones previously described in the earliest angiosperms. The different orientations of carpels in legumes appear easily switchable through changes in flower symmetry and floral meristem sizes. Regardless of orientation of a single carpel with respect to the inflorescence axis, the placenta-bearing suture invariably remains adaxial as related to the floral axis. This conclusion relaxes the existing controversies between the supposed megasporophyll- derived nature of the carpel and observed diversity of placentation in known Mesozoic angiosperms.


2020 ◽  
pp. 1-8
Author(s):  
Xuan (Jade) Wu ◽  
Melinda J. Knuth ◽  
Charles R. Hall ◽  
Marco A. Palma

Flower species is one of the key determinants of the aesthetic and economic value of floral products. This research study sought to evaluate whether consumer perceptions of the aesthetic appeal and monetary valuations of floral arrangements change by substituting high-cost species with low-cost species of similar appearance. In addition, the researchers explored consumer preferences for flower symmetry, which provides information to assist floral designers in choosing and using species to increase profit margins and improve the economic efficiency of the floral industry. Two experiments were administered through an online survey. For the first experiment, no difference was shown in both willingness to pay and attractiveness ratings for flowers in the high-dollar value vs. low-dollar value comparison groups. For the second experiment, roses (Rosa hybrida) were rated the highest on attractiveness, followed by dahlia (Dahlia hybrida), ranunculus (Ranunculus asiaticus), and anthurium (Anthurium sp.). Radial flowers were considered most appealing, followed by asymmetrical flowers, and last, bilaterally symmetrical flowers. The results of this study lend insight into how the general floral consumer does not differentiate between flower species that are similar in design features such as color, size, or symmetry. This information can be used by floral business operators to sell their bouquets at a higher margin by strategically using lower-cost flower inputs.


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 395
Author(s):  
Francesca Lucibelli ◽  
Maria Carmen Valoroso ◽  
Serena Aceto

In the plant kingdom, the flower is one of the most relevant evolutionary novelties. Floral symmetry has evolved multiple times from the ancestral condition of radial to bilateral symmetry. During evolution, several transcription factors have been recruited by the different developmental pathways in relation to the increase of plant complexity. The MYB proteins are among the most ancient plant transcription factor families and are implicated in different metabolic and developmental processes. In the model plant Antirrhinum majus, three MYB transcription factors (DIVARICATA, DRIF, and RADIALIS) have a pivotal function in the establishment of floral dorsoventral asymmetry. Here, we present an updated report of the role of the DIV, DRIF, and RAD transcription factors in both eudicots and monocots, pointing out their functional changes during plant evolution. In addition, we discuss the molecular models of the establishment of flower symmetry in different flowering plants.


2019 ◽  
Vol 20 (6) ◽  
pp. 1276 ◽  
Author(s):  
Yi Yang ◽  
Ming Sun ◽  
Cunquan Yuan ◽  
Yu Han ◽  
Tangchun Zheng ◽  
...  

Chrysanthemum morifolium is a gynomonoecious plant that bears both female zygomorphic ray florets and bisexual actinomorphic disc florets in the inflorescence. This sexual system is quite prevalent in Asteraceae, but poorly understood. CYCLOIDEA (CYC) 2 subclade transcription factors, key regulators of flower symmetry and floret identity in Asteraceae, have also been speculated to function in reproductive organs and could be an entry point for studying gynomonoecy. However, the molecular mechanism is still unclear. On the other hand, the Arabidopsis WUSCHEL (WUS) transcription factor has been proven to play a vital role in the development of reproductive organs. Here, a WUS homologue (CmWUS) in C. morifolium was isolated and characterized. Overexpression of CmWUS in A. thaliana led to shorter siliques and fewer stamens, which was similar to CYC2-like genes reported before. In addition, both CmWUS and CmCYC2 were highly expressed in flower buds during floral organ differentiation and in the reproductive organs at later development stages, indicating their involvement in the development of reproductive organs. Moreover, CmWUS could directly interact with CmCYC2d. Thus, our data suggest a collaboration between CmWUS and CmCYC2 in the regulation of reproductive organ development in chrysanthemum and will contribute to a further understanding of the gynomonoecious sexual system in Asteraceae.


2019 ◽  
Author(s):  
Dario I. Ojeda ◽  
Erik Koenen ◽  
Sandra Cervantes ◽  
Manuel de la Estrella ◽  
Eulalia Banguera-Hinestroza ◽  
...  

AbstractDetarioideae is well known for its high diversity of floral traits, including flower symmetry, number of organs, and petal size and morphology. This diversity has been characterized and studied at higher taxonomic levels, but limited analyses have been performed among closely related genera with contrasting floral traits due to the lack of fully resolved phylogenetic relationships. Here, we used four representative transcriptomes to develop an exome capture bait for the entire subfamily and applied it to the Anthonotha clade using a complete data set (61 specimens) representing all extant floral diversity. Our phylogenetic analyses recovered congruent topologies using ML and Bayesian methods. The genus Anthonotha was recovered as monophyletic contrary to the remaining three genera (Englerodendron, Isomacrolobium and Pseudomacrolobium), which form a monophyletic group sister to Anthonotha. We inferred a total of 35 transitions for the seven floral traits (pertaining to flower symmetry, petals, stamens and staminodes) that we analyzed, suggesting that at least 30% of the species in this group display transitions from the ancestral condition reconstructed for the Anthonotha clade. The main transitions were towards a reduction in the number of organs (petals, stamens and staminodes). Despite the high number of transitions, our analyses indicate that the seven characters are evolving independently in these lineages. Petal morphology is the most labile floral trait with a total of seven independent transitions in number and seven independent transitions to modification in petal types. The diverse petal morphology along the dorsoventral axis of symmetry within the flower is not associated with differences at the micromorphology of petal surface, suggesting that in this group all petals within the flower might possess the same petal identity at the molecular level. Our results provide a solid evolutionary framework for further detailed analyses of the molecular basis of petal identity.


Sign in / Sign up

Export Citation Format

Share Document