scholarly journals The interaction of high-power fiber laser irradiation with intrusive rocks

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Youngjin Seo ◽  
Dongkyoung Lee ◽  
Sukhoon Pyo

AbstractLaser cutting of intrusive rocks, including granite, gabbro, and diorite, is carried out in order to assess the cut characteristics through geometrical measurements, such as kerf width, melting width, and penetration depth. The absorption rate for each specimen at the wavelength of 1064 nm is measured using a spectrophotometer. A multimode fiber laser is used in this study with the power of 9 kW and different cutting speeds. Furthermore, nitrogen gas at 13 bar is applied as the assistant gas in order to remove the melted material effectively. As a result of the experiment, the relationship between the cutting speed and geometrical measurements is investigated. Furthermore, variations of penetration depth are performed in accordance with the number of laser cuts. In addition, through energy dispersive X-ray (EDX) element mapping, minerals that comprise the rocks are classified and characterized. Subsequently, the changes in the microstructure and chemical composition of each specimen, before and after laser cutting, are compared using scanning electron microscope (SEM) and EDX analyses. Experimental results demonstrate that the cutting characteristics vary, depending on the types of minerals that make up the rock. Based on a series of tests, it is identified that volume energy of more than 3.06E + 13 $$\mathrm{J}/{\mathrm{m}}^{3}$$ J / m 3 is required to fully cut intrusive rocks that have a thickness of 25 mm.

2018 ◽  
Vol 103 ◽  
pp. 311-317 ◽  
Author(s):  
Sangwoo Seon ◽  
Jae Sung Shin ◽  
Seong Yong Oh ◽  
Hyunmin Park ◽  
Chin-Man Chung ◽  
...  

2006 ◽  
Vol 505-507 ◽  
pp. 847-852 ◽  
Author(s):  
Xu Yue Wang ◽  
Wen Ji Xu ◽  
Ren Ke Kang ◽  
Yi De Liang

An experimental analysis is presented which investigates the relationship between cutting parameters and the volume of material removal as well as its cutting quality on a Nd:YAG laser cutting system. The parameters that varied on two testing thickness during cutting include cutting speed, incident laser power and focal position in a continuous through cut. Various trends of the kerf geometrical features in terms of the varying process parameters are analyzed and shown to be reasonable. Discussions are also given on kerf geometry control in situations with cutting parameters. It shows that the effects of varying parameters such as cutting speed, laser power and focal position on cutting kerf width, surface roughness, and striation that have provided a deeper understanding of the laser machining.


2010 ◽  
Vol 154-155 ◽  
pp. 917-922 ◽  
Author(s):  
Xiao Chuan Chen ◽  
Ling Fei Ji ◽  
Yong Bao ◽  
Yi Jian Jiang

In this paper, high quality cutting of 1 mm dense Al2O3 electronic ceramic processed by a fiber laser with spot diameter of 15 μm was reported. The narrow kerf with 30μm width was obtained with laser power of 100 W. 300 W is the laser power threshold of the kerf enlargement. Under higher laser power, the ceramics can be damage-free cut with higher cutting speed. Striation-free cutting could be achieved at 1000 W laser power with a cutting speed of 350 mm/s. The ratio of cutting speed to laser power for striation-free cutting was determined as 0.35. The black cutting surface was due to the mass tetragonal alumina induced by N2 as assist gas.


2019 ◽  
Vol 44 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Saša Živanović ◽  
Slobodan Tabaković ◽  
Saša Radjelović

The main objective of the research covered in this paper is to present results for the quality of surfaces thermally cut with a laser beam. The variety of steel materials used as samples on which laser cutting is performed are the following Č.0146 (1.0330), Č.0147 (1.0333), Č.2131 (1.5024), SS Ferbec CR, HARDOX 450 and HARDOX 550. Thermal cutting is carried out with a CNC controlled Fiber laser BAYKAL type BLS–F–1530. The quality of the cut surface is analyzed based on varying the power of the laser beam, changing cutting speed and the type of additional gas (oxygen, air and nitrogen). By visual inspection, measuring the roughness of the cut surface and measuring the width of the intersection, it is determined the influence of the factors like type of the base material, type of gases, the power of thelaser beam and the cutting speed, in accordance with the standards DIN EN ISO 9013-2002 and the JUS C.T3.022.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 546 ◽  
Author(s):  
Youngjin Seo ◽  
Dongkyoung Lee ◽  
Sukhoon Pyo

Cement-based materials are the most prevalent construction materials, and the conventional cutting techniques are still mostly used for fabricating the materials. However, these conventional cutting methods could generate undesirable micro-cracks and remove unintentional structural sections. This experimental study aims to evaluate the effects of the new fabricating method using laser on the microstructural characteristics of the cement-based materials. The experimental variables are laser cutting speed, water to cement ratio and material compositions. In order to compare the microstructure before and after the laser interaction, the microstructure of the cut surface is observed through scanning electron microscopy/energy dispersive X-Ray (SEM/EDX). After the laser interaction, the Material Removed Zone (MRZ) and Heat Affected Zone (HAZ) are observed on the cut surface. In MRZ, it is found that the glassy layer is thickened by an increasing amount of silicate-based materials in cement-based materials. In addition, it concluded that the amount of silicate-based material mixed in the cement-based materials affects the laser cutting quality.


Author(s):  
J. Temple Black

Tool materials used in ultramicrotomy are glass, developed by Latta and Hartmann (1) and diamond, introduced by Fernandez-Moran (2). While diamonds produce more good sections per knife edge than glass, they are expensive; require careful mounting and handling; and are time consuming to clean before and after usage, purchase from vendors (3-6 months waiting time), and regrind. Glass offers an easily accessible, inexpensive material ($0.04 per knife) with very high compressive strength (3) that can be employed in microtomy of metals (4) as well as biological materials. When the orthogonal machining process is being studied, glass offers additional advantages. Sections of metal or plastic can be dried down on the rake face, coated with Au-Pd, and examined directly in the SEM with no additional handling (5). Figure 1 shows aluminum chips microtomed with a 75° glass knife at a cutting speed of 1 mm/sec with a depth of cut of 1000 Å lying on the rake face of the knife.


2012 ◽  
Vol 33 (2) ◽  
pp. 83-88 ◽  
Author(s):  
David Moreau ◽  
Jérome Clerc ◽  
Annie Mansy-Dannay ◽  
Alain Guerrien

This experiment investigated the relationship between mental rotation and sport training. Undergraduate university students (n = 62) completed the Mental Rotation Test ( Vandenberg & Kuse, 1978 ), before and after a 10-month training in two different sports, which either involved extensive mental rotation ability (wrestling group) or did not (running group). Both groups showed comparable results in the pretest, but the wrestling group outperformed the running group in the posttest. As expected from previous studies, males outperformed women in the pretest and the posttest. Besides, self-reported data gathered after both sessions indicated an increase in adaptive strategies following training in wrestling, but not subsequent to training in running. These findings demonstrate the significant effect of training in particular sports on mental rotation performance, thus showing consistency with the notion of cognitive plasticity induced from motor training involving manipulation of spatial representations. They are discussed within an embodied cognition framework.


2020 ◽  
Vol 22 (3) ◽  
pp. 341-361
Author(s):  
Gonzalo Grau-Pérez ◽  
J. Guillermo Milán

In Uruguay, Lacanian ideas arrived in the 1960s, into a context of Kleinian hegemony. Adopting a discursive approach, this study researched the initial reception of these ideas and its effects on clinical practices. We gathered a corpus of discursive data from clinical cases and theoretical-doctrinal articles (from the 1960s, 1970s and 1980s). In order to examine the effects of Lacanian ideas, we analysed the difference in the way of interpreting the clinical material before and after Lacan's reception. The results of this research illuminate some epistemological problems of psychoanalysis, especially the relationship between theory and clinical practice.


2013 ◽  
Vol 4 (1) ◽  
pp. 63-68 ◽  
Author(s):  
Zs. Kun ◽  
I. G. Gyurika

Abstract The stone products with different sizes, geometries and materials — like machine tool's bench, measuring machine's board or sculptures, floor tiles — can be produced automatically while the manufacturing engineer uses objective function similar to metal cutting. This function can minimise the manufacturing time or the manufacturing cost, in other cases it can maximise of the tool's life. To use several functions, manufacturing engineers need an overall theoretical background knowledge, which can give useful information about the choosing of technological parameters (e.g. feed rate, depth of cut, or cutting speed), the choosing of applicable tools or especially the choosing of the optimum motion path. A similarly important customer's requirement is the appropriate surface roughness of the machined (cut, sawn or milled) stone product. This paper's first part is about a five-month-long literature review, which summarizes in short the studies (researches and results) considered the most important by the authors. These works are about the investigation of the surface roughness of stone products in stone machining. In the second part of this paper the authors try to determine research possibilities and trends, which can help to specify the relation between the surface roughness and technological parameters. Most of the suggestions of this paper are about stone milling, which is the least investigated machining method in the world.


2021 ◽  
Vol 33 (1) ◽  
pp. 012022
Author(s):  
Atsushi Yagi ◽  
Seigo Kadonaga ◽  
Yasuhiro Okamoto ◽  
Hiroaki Ishiguro ◽  
Ryohei Ito ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document