A three-dimensional immune-oncology model for studying in vitro human NK cell cytotoxic activity v1

Author(s):  
Nontaphat Thongsin ◽  
Methichit Wattanapanitch

Immunotherapy has emerged as a promising therapeutic approach for treating several forms of cancer. Adoptive cell transfer of immune cells, such as natural killer (NK) cells, provides a powerful therapeutic potential against tumor cells. In the past decades, two-dimensional (2D) tumor models have been used to investigate the effectiveness of immune cell killing. However, the 2D tumor models exhibit less structural complexity and cannot recapitulate the physiological condition of the tumor microenvironment. Thus, the effectiveness of immune cells against tumor cells using these models cannot fully be translated to clinical studies. In order to gain a deeper insight into immune cell-tumor interaction, more physiologically relevant in vivo-like three-dimensional (3D) tumor models have been developed. These 3D tumor models can mimic the dynamic cellular activities, making them much closer to the in vivo tumor profiles. Here, we describe a simple and effective protocol to study the cytotoxic activity of primary human NK cells toward the 3D tumor spheroids. Our protocol includes isolation and expansion of human NK cells, labeling and formation of tumor spheroids, co-culture of NK cells and tumor spheroids, and evaluation of cytotoxic activity using a confocal microscope. This protocol is also applicable to other types of tumors and immune cells.

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Shiho Chiba ◽  
Hiroaki Ikushima ◽  
Hiroshi Ueki ◽  
Hideyuki Yanai ◽  
Yoshitaka Kimura ◽  
...  

The eradication of tumor cells requires communication to and signaling by cells of the immune system. Natural killer (NK) cells are essential tumor-killing effector cells of the innate immune system; however, little is known about whether or how other immune cells recognize tumor cells to assist NK cells. Here, we show that the innate immune receptor Dectin-1 expressed on dendritic cells and macrophages is critical to NK-mediated killing of tumor cells that express N-glycan structures at high levels. Receptor recognition of these tumor cells causes the activation of the IRF5 transcription factor and downstream gene induction for the full-blown tumoricidal activity of NK cells. Consistent with this, we show exacerbated in vivo tumor growth in mice genetically deficient in either Dectin-1 or IRF5. The critical contribution of Dectin-1 in the recognition of and signaling by tumor cells may offer new insight into the anti-tumor immune system with therapeutic implications.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4919-4919
Author(s):  
Mario I. Vega ◽  
Sara Huerta-Yepez ◽  
Melisa Martinez-Paniagua ◽  
Stavroula Baritaki ◽  
Benjamin Bonavida

Abstract Abstract 4919 Rituximab, a chimeric anti-CD20 mAb, has being used, alone or in combination with chemotherapy, in the treatment of patients with B-NHL and rheumatoid arthritis. It is also being tested clinically in the treatment of other B cell malignancies. The mechanisms by which the antibody depletes the B cells have been shown to be mediated via ADCC, CDC, and apoptosis. In addition, the antibody also signals the cells and modifies various survival pathways and sensitizes the resistant tumor cells to various apoptotic stimuli (Jazirehi and Bonavida, Oncogene 24:2121, 2005). The role of the host innate cytotoxic cells, such as NK cells, in cooperation with rituximab in the depletion of B-NHL cells has been poorly explored. Studies by us and others have reported that rituximab sensitizes resistant B-NHL tumor cells to both Fas ligand and TRAIL-induced apoptosis (Bonavida, Oncogene 26:3629, 2007; Daniel, D. et al., Blood 110:4037, 2007). Since NK cells express on the surface TRAIL, we hypothesized that rituximab may also sensitize the TRAIL-resistant tumor cells to NK-mediated cytotoxicity. Accordingly, we have examined various TRAIL-resistant B-NHL cell lines and used peripheral blood-derived purified human NK cells. Treatment of various B-NHL cell lines with rituximab sensitized the cells to TRAIL-induced apoptosis. The mechanism of TRAIL-induced cytotoxicity was found to be the result of TRAIL-induced inhibition of NF-κB and downstream inhibition of the DR5 transcription repressor Yin Yang 1 (YY1) as well as inhibition of anti-apoptotic gene products such as Bclxl. Treatment of various B-NHL cell lines with rituximab, unlike treatment with control IgG1, resulted in significant cytotoxicity in the presence of purified NK cells. The extent of the cytotoxic activity was a function of the E:T ratios used. We then examined the contribution of TRAIL expressed on the NK cell surface for its role in NK-mediated cytotoxicity of rituximab-pretreated B-NHL cells. We used a neutralizing TRAIL antibody that was added in the reaction mixture and demonstrated that the NK cytotoxic activity was significantly reduced compared to controls. These studies with rituximab were also confirmed with other CD20 mAbs. We are currently examining the sensitization of freshly-derived B-NHL and CLL cells that are treated with rituximab and other anti-CD20 mAbs to NK-mediated cytotoxicity for validation of the findings with cell lines. The present findings suggest that, in vivo, patients who are treated with rituximab may recruit NK and other effector cells to mediate, independently of ADCC, cytotoxicity via the TNF-family ligands (e.g. TNF-α, Fas-L, TRAIL). The studies also suggest that this B cell-depletion mechanism by NK cells may contribute to the mechanism of rituximab- mediated depletion of B-NHL cells in vivo. Noteworthy, the proposed host cytotoxic mechanism may not be functional if the therapeutic treatment consists of the combination of rituximab and immunosuppressive chemotherapeutic drugs that may lead to depletion or inactivation of host cytotoxic cells. Disclosures: No relevant conflicts of interest to declare.


1979 ◽  
Vol 149 (5) ◽  
pp. 1117-1133 ◽  
Author(s):  
N Minato ◽  
B R Bloom ◽  
C Jones ◽  
J Holland ◽  
L M Reid

Cell lines known to be tumorigenic in the nude mouse were modified by rendering them persistently infected (P.I.) with a variety of RNA viruses, including measles, mumps, vesicular stomatitis virus, and influenza. Although as few as 100 HeLa or BHK cells produced tumors in 100% of nude mice, as many as 2 x 10(7) of the same cells P.I. with viruses failed to produce tumors. An active host response responsible for restricting the growth of the P.I. cells was suggested by the findings of marked mononuclear cell infiltrates at the inoculation sites and the inability of irradiated nude mice to reject them. An analysis of the in vitro cytotoxic activity of spleen cells from normal nude mice indicated that: (a) P.I. cell lines, but not uninfected cell lines, were susceptible to spontaneous cytotoxicity; (b) in vivo inoculation of P.I. lines induced an enhanced cytotoxic activity for P.I. targets in vitro, and this induction was not specific either for inducing virus or cell line; and (c) the effector cell had the characteristics for natural killer (NK) cells. Although the specificity of recognition of the various P.I. cell lines remains unclear, cold competition experiments indicated that blocking the killing of one P.I. cell line, e.g. HeLa-measles, could be achieved only by unlabeled homologous cells, i.e. HeLa-measles, and not by uninfected cells or other P.I. lines. A variant subline of BHK cells P.I. with VSV was selected for its ability to withstand the rejection process in nude mice. These cells formed metastatic and invasive tumors in nude mice. Although they were the most potent inducers in vivo of NK cell activity against various P.I. targets, they were the most resistant of the P.I. lines to NK cell cytotoxicity in vitro. In this system there was a good correlation between tumor rejection in vivo and susceptibility to NK cells in vitro. The present results suggest that NK cells may play a significant role in both rejection of tumor cells, and in resistance to viruses, particularly persistent infections.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A163-A163
Author(s):  
Yui Harada ◽  
Yoshikazu Yonemitsu

BackgroundCancer immunotherapy has been established as a new therapeutic category since the recent success of immune checkpoint inhibitors and a type of adoptive immunotherapy, namely chimeric antigen receptor-modified T cells (CAR-T). Although CAR-T demonstrated impressive clinical results, serious adverse effects (cytokine storm and on-target off-tumor toxicity) and undefined efficacy on solid tumors are important issues to be solved. We’ve developed a cutting-edge, simple, and feeder-free method to generate highly activated and expanded human NK cells from peripheral blood (US9404083, PCT/JP2019/012744, PCT/JP2020/012386), and have been conducting further investigation why our new type of NK cells, named as GAIA-102, are so effective to kill malignant cells.MethodsCryopreserved PBMCs purchased from vendors were mixed and processed by using LOVO and CliniMACS® Prodigy (automated/closed systems). CD3+ and CD34+ cells were depleted, and the cells were cultured with high concentration of hIL-2 and 5% UltraGRO® for 14 days in our original closed system. Then, we confirmed the expression of surface markers, CD107a mobilization and cell-mediated cytotoxicity against various tumor cells and normal cells with or without monoclonal antibody drugs in vitro and antitumor effects against peritoneal dissemination model using SKOV3 in vivo.ResultsImportantly, we’ve found that our GAIA-102 exhibited CD3-/CD56bright/CD57- immature phenotype that could kill various tumor cells efficiently from various origins, including Raji cells that was highly resistant to NK cell killing. More importantly, massive accumulation, retention, infiltration and sphere destruction by GAIA-102 were affected neither by myeloid-derived suppressor cells nor regulatory T-lymphocytes. GAIA-102 was also effective in vivo to murine model of peritoneal dissemination of human ovarian cancer; thus, these findings indicate that GAIA-102 has a potential to be an ‘upward compatible’ modality over CAR-T strategy, and would be a new and promising candidate for adoptive immunotherapy against solid tumors.ConclusionsWe now just started GMP/GCTP production of this new and powerful NK cells and first-in-human clinical trials in use of GAIA-102 will be initiated on 2021.Ethics ApprovalThe animal experiments were reviewed and approved by the Institutional Animal Care and Use Committee of Kyushu University (approval nos. A30-234-0 and A30-359-0).


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi36-vi37
Author(s):  
Evelina Blomberg ◽  
Manuela Silginer ◽  
Michael Weller

Abstract Glioblastoma is characterized by a poor prognosis and a challenging phenotype for drug development. Although multimodal treatment, including surgery, radio- and chemotherapy is applied, the overall survival remains just above one year. Numerous clinical trials have studied targeted therapies against commonly deregulated pathways, but an efficient targeted drug is yet to be discovered. Likewise, immunotherapy has not been shown to be active. A subset of glioma tumor cells demonstrates stem-like properties; these cells are commonly referred to as glioma initiating cells (GIC). These types of cells are pluripotent and can by definition initiate and recapitulate glioma growth in experimental animals in vivo. Furthermore, these cells are often resistant to conventional therapies. Interferon β (IFN-β) is an immunomodulatory molecule with anti-cancer properties. We have previously shown that IFN-β greatly reduces sphere-formation capability of GIC. It was also confirmed that IFN-β sensitized resistant GIC to irradiation or the chemotherapeutic agent, temozolomide (TMZ). IFN-β treatment significantly prolonged survival in a xenograft model with GIC cells. In the current project, we want to use syngeneic mouse models to study the immunomodulatory effects of type I IFNs. Preliminary results indicate that abrogation of IFN signalling in tumor cells by CRISPR/Cas9 technology prolonged survival in mice only in cell lines which have substantial baseline autocrine IFN signalling. On the contrary, we did not observe a difference in survival when wild-type tumor cells were implanted in either IFNAR1 deficient or proficient hosts. Flow cytometry analysis will elucidate changes in immune cell recruitment and infiltration upon IFN signalling disruption. Moreover, we explore different treatments in combination with IFN-β as there are indications that TMZ or radiotherapy can have synergistic effects with stimulation of interferon type I signalling.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A834-A834
Author(s):  
Xue Yao ◽  
Sandro Matosevic

BackgroundThe effectiveness of natural killer (NK) cell-based immunotherapy against solid tumors is limited by the lack of specific antigens and the immunosuppressive tumor microenvironment (TME). Glioblastoma multiforme (GBM) is one such heavily immunosuppressive tumor that has been particularly hard to target and remains without a viable treatment. The development of novel approaches to enhance the efficacy of NK cells against GBM is urgently needed. NK cell engagers (NKCE) have been developed to enhance the efficacy of NK cell therapy.MethodsTo improve the clinical efficacy of NK cell therapy, we are developing a new generation of multi-specific killer engagers, which consists of a neoantigen-targeting moiety, together with cytokine and chemokine-producing domains. Neoantigens are new antigens formed specifically in tumor cells due to genome mutations, making them highly specific tools to target tumor cells. Our engager has been designed to target Wilms' tumor-1 (WT-1), a highly specific antigen overexpressed in GBM among other solid tumors. This is done through the generation of an scFv specific targeting the complex of WT-1126-134/HLA-A*02:01 on the surface of GBM. On the NK cell side, the engager is designed to target the activating receptor NKp46. Incorporation of the cytokine IL-15 within the engager supports the maturation, persistence, and expansion of NK cells in vivo while favoring their proliferation and survival in the tumor microenvironment. Additionally, our data indicated that the chemokine CXCL10 plays an important role in the infiltration of NK cells into GBM, however, GBM tumors produce low levels of this chemokine. Incorporation of a CXCL10-producing function into our engager supports intratumoral NK cell trafficking by promoting, through their synthetic production, increased levels of CXCL10 locally in the tumor microenvironment.ResultsCollectively, this has resulted in a novel multifunctional NK cell engager, combining neoantigen-cytokine-chemokine elements fused to an activating domain-specific to NK cells, and we have investigated its ability to support and enhance NK cell-mediated cytotoxicity against solid tumors in vitro and in vivo against patient-derived GBM models. The multi-specific engager shows both high tumor specificity, as well as the ability to overcome NK cell dysfunction encountered in the GBM TME.ConclusionsWe hypothesize that taking advantage of our multi-functional engager, NK cells will exhibit superior ex vivo expansion, infiltration, and antitumor activity in the treatment of GBM and other solid tumors.


2021 ◽  
Vol 7 (4) ◽  
pp. 444
Author(s):  
Pei Zhuang ◽  
Yi-Hua Chiang ◽  
Maria Serafim Fernanda ◽  
Mei He

Cancer still ranks as a leading cause of mortality worldwide. Although considerable efforts have been dedicated to anticancer therapeutics, progress is still slow, partially due to the absence of robust prediction models. Multicellular tumor spheroids, as a major three-dimensional (3D) culture model exhibiting features of avascular tumors, gained great popularity in pathophysiological studies and high throughput drug screening. However, limited control over cellular and structural organization is still the key challenge in achieving in vivo like tissue microenvironment. 3D bioprinting has made great strides toward tissue/organ mimicry, due to its outstanding spatial control through combining both cells and materials, scalability, and reproducibility. Prospectively, harnessing the power from both 3D bioprinting and multicellular spheroids would likely generate more faithful tumor models and advance our understanding on the mechanism of tumor progression. In this review, the emerging concept on using spheroids as a building block in 3D bioprinting for tumor modeling is illustrated. We begin by describing the context of the tumor microenvironment, followed by an introduction of various methodologies for tumor spheroid formation, with their specific merits and drawbacks. Thereafter, we present an overview of existing 3D printed tumor models using spheroids as a focus. We provide a compilation of the contemporary literature sources and summarize the overall advancements in technology and possibilities of using spheroids as building blocks in 3D printed tissue modeling, with a particular emphasis on tumor models. Future outlooks about the wonderous advancements of integrated 3D spheroidal printing conclude this review.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3607-3607
Author(s):  
Grace Lee ◽  
Sheela Karunanithi ◽  
Zachary Jackson ◽  
David Wald

NK cells are a subset of lymphocytes that directly recognize and lyse tumor cells without the limitation of antigen specific receptor recognition. In addition to behaving as cytotoxic effector cells, NK cells unlike T cells are not thought to elicit graft versus host disease. The combination of these characteristics makes NK cells a powerful tool for adoptive cell therapy. Despite the promise of NK cell therapy, key hurdles in achieving significant clinical efficacy include both generating sufficient numbers of highly tumoricidal NK cells and maintaining the cytotoxic activity of these cells in vivo despite the immunosuppressive tumor microenvironment. Our lab and others have developed several feeder cell line-based expansion modules that robustly stimulate the ex vivo proliferation of NK cells. However, strategies to enhance and sustain the activity of NK cells once administered in vivo are still limited. In order to identify strategies to enhance the cytotoxic activity of NK cells, we developed a high-throughput small molecule screen (Figure 1A) that involved a calcein-based cytotoxicity assay of ex vivo expanded and treated NK cells against ovarian cancer cells (OVCAR-3). 20,000 compounds were screened and the screen was found to be highly robust (Z'>0.59). We identified 29 hits that led to at least a 25% increase in cytotoxicity as compared to DMSO control-treated NK cells. One of the most promising hits was the pan-ROCK inhibitor, Y-27632 that led to an 30% increase in NK killing of the OVCAR-3 cells. We validated that ROCK inhibition leads to enhanced NK cell cytotoxic activity using Y-27632 (Figure 1B) as well as other well-established ROCK inhibitors such as Fasudil using a flow cytometry based killing assay. Y-27632 increased NK cell cytotoxicity in a dose- and time- dependent manner. ROCK inhibition consistently led to ~10-25% increase in NK cell cytotoxic activity directed against a variety of ovarian (Figure 1C) and other solid tumor cell lines (Figure 1D). Interestingly, we found that the NK hyperactivation persists for up to 48hrs after washing off the drug that may enable ex vivo stimulation before NK cell infusion. Our preliminary results showed that ROCK inhibition activates PI3K-dependent Akt activation (Figure 1E). We hypothesize that ROCK inhibition restores Akt activation which may be critical for NK cell activating receptor pathways and our current investigations will test these hypotheses. ROCK inhibitors, such as Y-27632 and Fasudil have been utilized in both preclinical and clinical studies for a variety of diseases such as atherosclerosis, neurodegenerative disorders, and ocular diseases. However, the consequences of ROCK inhibition in NK cells has not been thoroughly investigated. Our work shows a promising novel strategy to significantly enhance NK cell therapy against cancer that has high translational potential. Disclosures No relevant conflicts of interest to declare.


Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1363
Author(s):  
Elena V. Abakushina ◽  
Liubov I. Popova ◽  
Andrey A. Zamyatnin ◽  
Jens Werner ◽  
Nikolay V. Mikhailovsky ◽  
...  

In the last decade, an impressive advance was achieved in adoptive cell therapy (ACT), which has improved therapeutic potential and significant value in promising cancer treatment for patients. The ACT is based on the cell transfer of dendritic cells (DCs) and/or immune effector cells. DCs are often used as vaccine carriers or antigen-presenting cells (APCs) to prime naive T cells ex vivo or in vivo. Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells are used as major tool effector cells for ACT. Despite the fact that NK cell immunotherapy is highly effective and promising against many cancer types, there are still some limitations, including insignificant infiltration, adverse conditions of the microenvironment, the immunosuppressive cellular populations, and the low cytotoxic activity in solid tumors. To overcome these difficulties, novel methods of NK cell isolation, expansion, and stimulation of cytotoxic activity should be designed. In this review, we discuss the basic characteristics of DC vaccines and NK cells as potential adoptive cell preparations in cancer therapy.


2018 ◽  
Vol 217 (9) ◽  
pp. 3045-3056 ◽  
Author(s):  
Leila Thuma ◽  
Deborah Carter ◽  
Helen Weavers ◽  
Paul Martin

Inflammation is pivotal to fight infection, clear debris, and orchestrate repair of injured tissues. Although Drosophila melanogaster have proven invaluable for studying extravascular recruitment of innate immune cells (hemocytes) to wounds, they have been somewhat neglected as viable models to investigate a key rate-limiting component of inflammation—that of immune cell extravasation across vessel walls—due to their open circulation. We have now identified a period during pupal development when wing hearts pulse hemolymph, including circulating hemocytes, through developing wing veins. Wounding near these vessels triggers local immune cell extravasation, enabling live imaging and correlative light-electron microscopy of these events in vivo. We show that RNAi knockdown of immune cell integrin blocks diapedesis, just as in vertebrates, and we uncover a novel role for Rho-like signaling through the GPCR Tre1, a gene previously implicated in the trans-epithelial migration of germ cells. We believe this new Drosophila model complements current murine models and provides new mechanistic insight into immune cell extravasation.


Sign in / Sign up

Export Citation Format

Share Document