aspergillus japonicus
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 9)

H-INDEX

25
(FIVE YEARS 1)

Author(s):  
Nelciele Cavalieri de Alencar Guimarães ◽  
Nathalia Nunes Glienke ◽  
Rodrigo Mattos Silva Galeano ◽  
Roberto Ruller ◽  
Fabiana Fonseca Zanoelo ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1173
Author(s):  
Daniela Remonatto ◽  
Bárbara Ribeiro Ferrari ◽  
Juliana Cristina Bassan ◽  
Cassamo Ussemane Mussagy ◽  
Valéria de Carvalho Santos-Ebinuma ◽  
...  

Lipase is an important group of biocatalysts, which combines versatility and specificity, and can catalyze several reactions when applied in a high amount of industrial processes. In this study, the lipase produced by Aspergillus japonicus under submerged cultivation, was immobilized by physical adsorption, using clay supports, namely, diatomite, vermiculite, montmorillonite KSF (MKSF) and kaolinite. Besides, the immobilized and free enzyme was characterized, regarding pH, temperature and kinetic parameters. The most promising clay support was MKSF that presented 69.47% immobilization yield and hydrolytic activity higher than the other conditions studied (270.7 U g−1). The derivative produced with MKSF showed high stability at pH and temperature, keeping 100% of its activity throughout 12 h of incubation in the pH ranges between 4.0 and 9.0 and at a temperature from 30 to 50 °C. In addition, the immobilized lipase on MKSF support showed an improvement in the catalytic performance. The study shows the potential of using clays as support to immobilized lipolytic enzymes by adsorption method, which is a simple and cost-effective process.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4479
Author(s):  
Pei-Jun Li ◽  
Jiang-Juan Pan ◽  
Li-Jun Tao ◽  
Xia Li ◽  
Dong-Lin Su ◽  
...  

The present study focuses on the biological synthesis, characterization, and antibacterial activities of silver nanoparticles (AgNPs) using extracellular extracts of Aspergillus japonicus PJ01.The optimal conditions of the synthesis process were: 10 mL of extracellular extracts, 1 mL of AgNO3 (0.8 mol/L), 4 mL of NaOH solution (1.5 mol/L), 30 °C, and a reaction time of 1 min. The characterizations of AgNPs were tested by UV-visible spectrophotometry, zeta potential, scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric (TG) analyses. Fourier transform infrared spectroscopy (FTIR) analysis showed that Ag+ was reduced by the extracellular extracts, which consisted chiefly of soluble proteins and reducing sugars. In this work, AgNO3 concentration played an important role in the physicochemical properties and antibacterial properties of AgNPs. Under the AgNO3 concentration of 0.2 and 0.8 mol/L, the diameters of AgNPs were 3.8 ± 1.1 and 9.1 ± 2.9 nm, respectively. In addition, smaller-sized AgNPs showed higher antimicrobial properties, and the minimum inhibitory concentration (MIC) values against both E. coli and S. aureus were 0.32 mg/mL.


2021 ◽  
Vol 7 (4) ◽  
pp. 278
Author(s):  
Delphine Grandmontagne ◽  
David Navarro ◽  
Virginie Neugnot-Roux ◽  
Simon Ladevèze ◽  
Jean-Guy Berrin

One of the challenges of the 21st century will be to feed more than 10 billion people by 2050. In animal feed, one of the promising approaches is to use agriculture by-products such as soybean meal as it represents a rich source of proteins. However, soybean meal proteins are embedded in a complex plant cell wall matrix, mostly composed of pectic polysaccharides, which are recalcitrant to digestion for animals and can cause digestive disorders in poultry breeding. In this study, we explored fungal diversity to find enzymes acting on soybean meal components. An exploration of almost 50 fungal strains enabled the identification of two strains (Aspergillus terreus and Aspergillus japonicus), which improved the solubilization of soybean meal in terms of polysaccharides and proteins. The two Aspergilli strains identified in the frame of this study offer a promising solution to process industrial food coproducts into suitable animal feed solutions.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1222
Author(s):  
Qiong He ◽  
Dongya Wang ◽  
Bingxue Li ◽  
Ambreen Maqsood ◽  
Haiyan Wu

The root-knot nematode is one of the most damaging plant-parasitic nematodes worldwide, and the ecofriendly alternative approach of biological control has been used to suppress nematode populations. Here the nematicidal activity of Aspergillus japonicus ZW1 fermentation filtrate against Meloidogyne incognita was evaluated in vitro and in greenhouse, and the effects of A. japonicus ZW1 fermentation filtrate on seed germination and the active compound of A. japonicus ZW1 fermentation filtrate were determined. The 2-week fermentation filtrate (2-WF) of A. japonicus ZW1 exhibited markedly inhibitory effects on egg hatching, and 5% 2-WF showed potential nematicidal activities on second-stage juveniles (J2s); the mortality of J2s was 100% after 24 h exposure. The internal contents of nematodes were degraded and remarkable protruded wrinkles were present on the body surface of J2s. The nematicidal activity of the fermentation was stable after boiling and was not affected by storage time. A germination assay revealed that 2-WF did not have a negative effect on the viability and germination of corn, wheat, rice, cowpeas, cucumbers, soybeans, or tomato seeds. The pot-grown study confirmed that a 20% fermentation broth solution significantly reduced root galls and egg numbers on tomatoes, and decreased galls and eggs by 47.3% and 51.8% respectively, over Czapek medium and water controls. The active compound from the A. japonicus ZW1 fermentation filtrate was isolated and identified as 1,5-Dimethyl Citrate hydrochloride ester on the basis of nuclear magnetic resonance (NMR) and LC-MS (liquid chromatograph-mass spectrometer) techniques. Thus, fermentation of A. japonicus ZW1 could be considered a potential new biological nematicide for the control of M. incognita.


2019 ◽  
Vol 21 ◽  
pp. 101312 ◽  
Author(s):  
Patricia Oliveira da Silva ◽  
Nelciele Cavalieri de Alencar Guimarães ◽  
John Dayvan Maidana Serpa ◽  
Douglas Chodi Masui ◽  
Clarice Rossatto Marchetti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document