Critical developmental period for grain yield and grain protein concentration in lentil

2021 ◽  
Vol 270 ◽  
pp. 108203
Author(s):  
Lachlan Lake ◽  
Diego Godoy Kutchartt ◽  
Daniel F. Calderini ◽  
Victor O. Sadras
2002 ◽  
Vol 82 (4) ◽  
pp. 489-498 ◽  
Author(s):  
B G McConkey ◽  
D. Curtin ◽  
C A Campbell ◽  
S A Brandt ◽  
F. Selles

We examined 1990-1996 crop and soil N data for no-tillage (NT), minimum tillage (MT) and conventional tillage (CT) systems from four long-term tillage studies in semiarid regions of Saskatchewan for evidence that the N status was affected by tillage system. On a silt loam and clay soil in the Brown soil zone, spring what (Triticum aestivum L.) grain yield and protein concentration were lower for NT compared with tilled (CT or MT) systems for a fallow-wheat (F-WM) rotation. Grain protein concentration for continuous wheat (Cont W) was also lower for NT than for MT. For a sandy loam soil in the Brown soil zone, durum (Triticum durum L.) grain protein concentration was similar for MT and NT for both Cont W and F-W, but NT had higher grain yield than MT (P < 0.05 for F-W only). For a loam soil in the Dark Brown soil zone, wheat grain yield for NT was increased by about 7% for fallow-oilseed-wheat (F-O-W) and wheat-oilseed-wheat (W-O-W) rotations. The higher grain yields for NT reduced grain protein concentration by dilution effect as indicated by similar grain N yield. However, at this site, about 23 kg ha-1 more fertilizer N was required for NT than for CT. Elimination of tillage increased total organic N in the upper 7.5 cm of soil and N in surface residues. Our results suggest that a contributing factor to decreased availability of soil N in medium- and fine-textured soils under NT was a slower rate of net N mineralization from organic matter. Soil nitrates to 2.4 m depth did not indicate that nitrate leaching was affected by tillage system. Current fertilizer N recommendations developed for tilled systems may be inadequate for optimum production of wheat with acceptable grain protein under NT is semiarid regions of Saskatchewan. Key words: Tillage intensity, N availability, soil N fractions, N mineralization, crop residue decomposition, grain protein


2002 ◽  
Vol 82 (3) ◽  
pp. 507-512 ◽  
Author(s):  
H. Wang ◽  
M. R. Fernandez ◽  
F. R. Clarke ◽  
R. M. DePauw ◽  
J. M. Clarke

Although leaf spotting diseases have been reported to have a negative effect on grain yield and seed characteristics of wheat (Triticum spp.), the magnitude of such effects on wheat grown on dryland in southern Saskatchewan is not known. A fungicide experiment was conducted at Swift Current (Brown soil) and Indian Head (Black soil) from 1997 to 1999 to determine the effect of leaf spotting diseases on yield and seed traits of wheat. Two fungicides, Folicur 3.6F and Bravo 500, were applied at different growth stages on three common wheat (Triticum aestivum L.) and three durum wheat (T. turgidum L. var durum) genotypes. Fungicide treatments generally did not affect yield, kernel weight, test weight or grain protein concentration, and these effects were relatively consistent among genotypes. Folicur applied at head emergence in 1997 and at flag leaf emergence and/or head emergence in 1998 increased yield at Indian Head (P < 0.05). Fungicides applied at and before flag leaf emergence tended to increase kernel weight. Grain protein concentration increased only in treatments of Bravo applications at Indian Head in 1998. These results suggested that under the dryland environment and management in southern Saskatchewan leaf spotting diseases generally have a small effect on yield, kernel weight, test weight and protein concentration. Key words: Wheat, leaf spotting diseases, fungicide, yield


1996 ◽  
Vol 36 (4) ◽  
pp. 443 ◽  
Author(s):  
MG Mason ◽  
RW Madin

Field trials at Beverley (19911, Salmon Gums (1991; 2 sites) and Merredin (1992; 2 sites), each with 5 rates of nitrogen (N) and 3 levels of weed control, were used to investigate the effect of weeds and N on wheat grain yield and protein concentration during 1991 and 1992. Weeds in the study were grasses (G) and broadleaf (BL). Weeds reduced both vegetative dry matter yield and grain yield of wheat at all sites except for dry matter at Merredin (BL). Nitrogen fertiliser increased wheat dry matter yield at all sites. Nitrogen increased wheat grain yield at Beverley and Merredin (BL), but decreased yield at both Salmon Gums sites in 1991. Nitrogen fertiliser increased grain protein concentration at all 5 sites-at all rates for 3 sites [Salmon Gums (G) and (BL) and Merredin (G)] and at rates of 69 kg N/ha or more at the other 2 sites [Beverley and Merredin (BL)]. However, the effect of weeds on grain protein varied across sites. At Merredin (G) protein concentration was higher where there was no weed control, possibly due to competition for soil moisture by the greater weed burden. At Salmon Gums (G), grain protein concentration was greater when weeds were controlled than in the presence of weeds, probably due to competition for N between crop and weeds. In the other 3 trials, there was no effect of weeds on grain protein. The effect of weeds on grain protein appears complex and depends on competition between crop and weeds for N and for water at the end of the season, and the interaction between the two.


2012 ◽  
Vol 4 (11) ◽  
Author(s):  
Ali Hafeez Malik ◽  
Allan Andersson ◽  
Ramune Kuktaite ◽  
Muhammad Yaqub Mujahid ◽  
Bismillah Khan ◽  
...  

1981 ◽  
Vol 21 (111) ◽  
pp. 424 ◽  
Author(s):  
WM Strong

Eighteen fertilizer trials, each with five levels of nitrogen (N) and three levels of phosphorus (PI, were conducted on black earth soils of the Darling Downs to establish optimal economic rates of N fertilizer in commercial, irrigated wheat crops. The optimal economic rate of N with a fertilizer: wheat price ratio (kg N: kg grain) of 5:l, the yield response of 100 kg/ha of applied N, the yield without fertilizer, and the yield with fertilizer not limiting were calculated from derived yield response relations at each site. A multi-variate regression procedure was used to determine which soil or crop management factors significantly influenced the rate of N needed to optimize wheat yield. Delay in planting after June 1 and the level of residual mineral N in the soil at planting had strong negative effects on the response to fertilizer and the optimal rate of fertilizer required. The results indicate that yields of irrigated wheat may be below the economic optimum because of sub-optimal applications of N. Other soil and management factors such as available soil P and number of irrigations also affected grain yield. At 1 3 sites low protein wheat (< 1 1.4�1~) was produced with all but the highest two rates of N fertilizer and at two sites even the highest rate produced low protein wheat. The effect of N fertilizer applied at planting on grain protein concentration was changed by the yield response to the fertilizer application. Grain protein concentration was curvilinearly related (R2 = 0.81) to relative grain yield (yield as a proportion of the maximum yield); grain protein was at its minimum at a relative yield of 0.5. Although heavy rates of N fertilizer at planting increased grain protein concentration on a few sites, usually these applications led to an inefficient use of N fertilizer; apparent incorporation of fertilizer N into grain decreased with increasing rate of fertilizer.


2003 ◽  
Vol 140 (4) ◽  
pp. 395-407 ◽  
Author(s):  
R. E. RUSKE ◽  
M. J. GOODING ◽  
S. A. JONES

Field experiments were conducted over 3 years to assess the effect of a triazole fungicide programme, and additions of strobilurin fungicides to it, on nitrogen uptake, accumulation and partitioning in a range of winter wheat cultivars. Commensurate with delayed senescence, fungicide programmes, particularly when including strobilurins, improved grain yield through improvements in both crop biomass and harvest index, although the relationship with green area duration of the flag leaf (GFLAD) depended on year and in some cases, cultivar. In all years fungicide treatments significantly increased the amount of nitrogen in the above-ground biomass, the amount of nitrogen in the grain and the nitrogen harvest index. All these effects could be linearly related to the fungicide effect on GFLAD. These relationships occasionally interacted with cultivar but there was no evidence that fungicide mode of action affected the relationship between GFLAD and yield of nitrogen in the grain. Fungicide treatments significantly reduced the amount of soil mineral N at harvest and when severe disease had been controlled, the net remobilization of N from the vegetation to the grain after anthesis. Fungicide maintained the filling of grain with both dry matter and nitrogen. The proportionate accumulation of nitrogen in the grain was later than that of dry matter and this difference was greater when fungicide had been applied. Effects of fungicide on grain protein concentration and its relationship with GFLAD were inconsistent over year and cultivar. There were several instances where grain protein concentration was unaffected despite large (1·5 t/ha) increases in grain yield following fungicide use. Dilution of grain protein concentration following fungicide use, when it did occur, was small compared with what would be predicted by adoption of other yield increasing techniques such as the selection of high yielding cultivars (based on currently available cultivars) or by growing wheat in favourable climates.


2014 ◽  
Vol 41 (3) ◽  
pp. 227 ◽  
Author(s):  
Sebastian Kipp ◽  
Bodo Mistele ◽  
Urs Schmidhalter

Yield and grain protein concentration (GPC) represent crucial factors in the global agricultural wheat (Triticum aestivum L.) production and are predominantly determined via carbon and nitrogen metabolism, respectively. The maintenance of green leaf area and the onset of senescence (Osen) are expected to be involved in both C and N accumulation and their translocation into grains. The aim of this study was to identify stay-green and early senescence phenotypes in a field experiment of 50 certified winter wheat cultivars and to investigate the relationships among Osen, yield and GPC. Colour measurements on flag leaves were conducted to determine Osen for 20 cultivars and partial least square regression models were used to calculate Osen for the remaining 30 cultivars based on passive spectral reflectance measurements as a high-throughput phenotyping technique for all varieties. Using this method, stay-green and early senescence phenotypes could be clearly differentiated. A significant negative relationship between Osen and grain yield (r2 = 0.81) was observed. By contrast, GPC showed a significant positive relationship to Osen (r2 = 0.48). In conclusion, the high-throughput character of our proposed phenotyping method should help improve the detection of such traits in large field trials as well as help us reach a better understanding of the consequences of the timing of senescence on yield.


1997 ◽  
Vol 48 (5) ◽  
pp. 635 ◽  
Author(s):  
C. J. Birch ◽  
S. Fukai ◽  
I. J. Broad

The effect of nitrogen application on the grain yield and grain protein concentration of barley was studied in 13 field trials covering a wide range of soil N conditions over 4 years at locations in south-eastern Queensland. The main objectives of the study were to quantify the response of barley to N application rate over a range of environmental conditions, and to explain the response in terms of soil mineral N, total N uptake, and N distribution in the plants. Barley made efficient use of N (60 kg grain/kg N) until grain yield reached 90% of maximum yield. Grain protein concentration did not increase to levels unacceptable for malting purposes until grain yield exceeded 85–90% of maximum yield. Nitrogen harvest index was generally high (above 0·75), and did not decrease until the total N supply exceeded that necessary for maximum grain yield. Rates of application of N for malting barley should be determined on the basis of soil analysis (nitrate-N) to 1 m depth and 90% of expected maximum grain yield, assuming that 17 kg N is taken up per tonne of grain produced. It can further be assumed that the crop makes full use of the nitrate N to 1 m present at planting, provided the soil is moist to 1 m. A framework relating grain yield to total N uptake, N harvest index, and grain N concentration is presented. Further, total N uptake of fertilised barley is related to N uptake without fertiliser, fertiliser application rate, and apparent N recovery. The findings reported here will be useful in the development of barley simulation models and decision support packages that can be used to aid N management.


2001 ◽  
Vol 69 (1) ◽  
pp. 47-67 ◽  
Author(s):  
M Cooper ◽  
D.R Woodruff ◽  
I.G Phillips ◽  
K.E Basford ◽  
A.R Gilmour

Sign in / Sign up

Export Citation Format

Share Document