scholarly journals The interactions of ZDHHC5/GOLGA7 with SARS-CoV-2 spike (S) protein and their effects on S protein’s subcellular localization, palmitoylation and pseudovirus entry

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Xiao-Tao Zeng ◽  
Xiao-Ti Yu ◽  
Wei Cheng

Abstract Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein determines virus entry and the palmitoylation of S protein affects virus infection. An acyltransferase complex ZDHHC5/GOGAL7 that interacts with S protein was detected by affinity purification mass spectrometry (AP-MS). However, the palmitoylated cysteine residues of S protein, the effects of ZDHHC5 or GOLGA7 knockout on S protein’s subcellular localization, palmitoylation, pseudovirus entry and the enzyme for depalmitoylation of S protein are not clear. Methods The palmitoylated cysteine residues of S protein were identified by acyl-biotin exchange (ABE) assays. The interactions between S protein and host proteins were analyzed by co-immunoprecipitation (co-IP) assays. Subcellular localizations of S protein and host proteins were analyzed by fluorescence microscopy. ZDHHC5 or GOGAL7 gene was edited by CRISPR-Cas9. The entry efficiencies of SARS-CoV-2 pseudovirus into A549 and Hela cells were analyzed by measuring the activity of Renilla luciferase. Results In this investigation, all ten cysteine residues in the endodomain of S protein were palmitoylated. The interaction of S protein with ZDHHC5 or GOLGA7 was confirmed. The interaction and colocalization of S protein with ZDHHC5 or GOLGA7 were independent of the ten cysteine residues in the endodomain of S protein. The interaction between S protein and ZDHHC5 was independent of the enzymatic activity and the PDZ-binding domain of ZDHHC5. Three cell lines HEK293T, A549 and Hela lacking ZDHHC5 or GOLGA7 were constructed. Furthermore, S proteins still interacted with one host protein in HEK293T cells lacking the other. ZDHHC5 or GOLGA7 knockout had no significant effect on S protein’s subcellular localization or palmitoylation, but significantly decreased the entry efficiencies of SARS-CoV-2 pseudovirus into A549 and Hela cells, while varying degrees of entry efficiencies may be linked to the cell types. Additionally, the S protein interacted with the depalmitoylase APT2. Conclusions ZDHHC5 and GOLGA7 played important roles in SARS-CoV-2 pseudovirus entry, but the reason why the two host proteins affected pseudovirus entry remains to be further explored. This study extends the knowledge about the interactions between SARS-CoV-2 S protein and host proteins and probably provides a reference for the corresponding antiviral methods.

2012 ◽  
Vol 93 (10) ◽  
pp. 2118-2130 ◽  
Author(s):  
Rachael Wash ◽  
Sabrina Calabressi ◽  
Stephanie Franz ◽  
Samantha J. Griffiths ◽  
David Goulding ◽  
...  

Recent RNA interference (RNAi) studies have identified many host proteins that modulate virus infection, but small interfering RNA ‘off-target’ effects and the use of transformed cell lines limit their conclusiveness. As murine embryonic stem (mES) cells can be genetically modified and resources exist where many and eventually all known mouse genes are insertionally inactivated, it was reasoned that mES cells would provide a useful alternative to RNAi screens. Beyond allowing investigation of host–pathogen interactions in vitro, mES cells have the potential to differentiate into other primary cell types, as well as being used to generate knockout mice for in vivo studies. However, mES cells are poorly characterized for virus infection. To investigate whether ES cells can be used to explore host–virus interactions, this study characterized the responses of mES cells following infection by herpes simplex virus type 1 (HSV-1) and influenza A virus. HSV-1 replicated lytically in mES cells, although mES cells were less permissive than most other cell types tested. Influenza virus was able to enter mES cells and express some viral proteins, but the replication cycle was incomplete and no infectious virus was produced. Knockdown of the host protein AHCYL1 in mES cells reduced HSV-1 replication, showing the potential for using mES cells to study host–virus interactions. Transcriptional profiling, however, indicated the lack of an efficient innate immune response in these cells. mES cells may thus be useful to identify host proteins that play a role in virus replication, but they are not suitable to determine factors that are involved in innate host defence.


Author(s):  
Payman Samavarchi-Tehrani ◽  
Hala Abdouni ◽  
James D.R. Knight ◽  
Audrey Astori ◽  
Reuben Samson ◽  
...  

AbstractViral replication is dependent on interactions between viral polypeptides and host proteins. Identifying virus-host protein interactions can thus uncover unique opportunities for interfering with the virus life cycle via novel drug compounds or drug repurposing. Importantly, many viral-host protein interactions take place at intracellular membranes and poorly soluble organelles, which are difficult to profile using classical biochemical purification approaches. Applying proximity-dependent biotinylation (BioID) with the fast-acting miniTurbo enzyme to 27 SARS-CoV-2 proteins in a lung adenocarcinoma cell line (A549), we detected 7810 proximity interactions (7382 of which are new for SARS-CoV-2) with 2242 host proteins (results available at covid19interactome.org). These results complement and dramatically expand upon recent affinity purification-based studies identifying stable host-virus protein complexes, and offer an unparalleled view of membrane-associated processes critical for viral production. Host cell organellar markers were also subjected to BioID in parallel, allowing us to propose modes of action for several viral proteins in the context of host proteome remodelling. In summary, our dataset identifies numerous high confidence proximity partners for SARS-CoV-2 viral proteins, and describes potential mechanisms for their effects on specific host cell functions.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1192
Author(s):  
Sami Saribas ◽  
Mahmut Safak

The oncogenic potential of both the polyomavirus large (LT-Ag) and small (Sm t-Ag) tumor antigens has been previously demonstrated in both tissue culture and animal models. Even the contribution of the MCPyV tumor antigens to the development of an aggressive human skin cancer, Merkel cell carcinoma, has been recently established. To date, the known primary targets of these tumor antigens include several tumor suppressors such as pRb, p53, and PP2A. However, a comprehensive list of the host proteins targeted by these proteins remains largely unknown. Here, we report the first interactome of JCV LT-Ag and Sm t-Ag by employing two independent “affinity purification/mass spectroscopy” (AP/MS) assays. The proteomics data identified novel targets for both tumor antigens while confirming some of the previously reported interactions. LT-Ag was found to primarily target the protein complexes with ATPase (v-ATPase and Smc5/6 complex), phosphatase (PP4 and PP1), and ligase (E3-ubiquitin) activities. In contrast, the major targets of Sm t-Ag were identified as Smarca1/6, AIFM1, SdhA/B, PP2A, and p53. The interactions between “LT-Ag and SdhB”, “Sm t-Ag and Smarca5”, and “Sm t-Ag and SDH” were further validated by biochemical assays. Interestingly, perturbations in some of the LT-Ag and Sm t-Ag targets identified in this study were previously shown to be associated with oncogenesis, suggesting new roles for both tumor antigens in novel oncogenic pathways. This comprehensive data establishes new foundations to further unravel the new roles for JCV tumor antigens in oncogenesis and the viral life cycle.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jin-Gu Lee ◽  
Weiliang Huang ◽  
Hangnoh Lee ◽  
Joyce van de Leemput ◽  
Maureen A. Kane ◽  
...  

Abstract Background SARS-CoV-2 causes COVID-19 which has a widely diverse disease profile. The mechanisms underlying its pathogenicity remain unclear. We set out to identify the SARS-CoV-2 pathogenic proteins that through host interactions cause the cellular damages underlying COVID-19 symptomatology. Methods We examined each of the individual SARS-CoV-2 proteins for their cytotoxicity in HEK 293 T cells and their subcellular localization in COS-7 cells. We also used Mass-Spec Affinity purification to identify the host proteins interacting with SARS-CoV-2 Orf6 protein and tested a drug that could inhibit a specific Orf6 and host protein interaction. Results We found that Orf6, Nsp6 and Orf7a induced the highest toxicity when over-expressed in human 293 T cells. All three proteins showed membrane localization in COS-7 cells. We focused on Orf6, which was most cytotoxic and localized to the endoplasmic reticulum, autophagosome and lysosomal membranes. Proteomics revealed Orf6 interacts with nucleopore proteins (RAE1, XPO1, RANBP2 and nucleoporins). Treatment with Selinexor, an FDA-approved inhibitor for XPO1, attenuated Orf6-induced cellular toxicity in human 293 T cells. Conclusions Our study revealed Orf6 as a highly pathogenic protein from the SARS-CoV-2 genome, identified its key host interacting proteins, and Selinexor as a drug candidate for directly targeting Orf6 host protein interaction that leads to cytotoxicity.


Author(s):  
Philipp Walch ◽  
Joel Selkrig ◽  
Leigh A. Knodler ◽  
Mandy Rettel ◽  
Frank Stein ◽  
...  

SummaryIntracellular bacterial pathogens inject effector proteins into host cells to hijack diverse cellular processes and promote their survival and proliferation. To systematically map effector-host protein-protein interactions (PPIs) during infection, we generated a library of 32 Salmonella enterica serovar Typhimurium (STm) strains expressing chromosomally encoded affinity-tagged effector proteins, and quantified PPIs in macrophages and epithelial cells by Affinity-Purification Quantitative Mass-Spectrometry. Thereby, we identified 25 previously described and 421 novel effector-host PPIs. While effectors converged on the same host cellular processes, most had multiple targets, which often differed between cell types. Using reciprocal co-immunoprecipitations, we validated 13 out of 22 new PPIs. We then used this host-pathogen physical interactome resource to demonstrate that SseJ and SseL collaborate in redirecting cholesterol to the Salmonella Containing Vacuole (SCV) via NPC1, PipB directly recruits the organelle contact site protein PDZD8 to the SCV, and SteC promotes actin bundling by directly phosphorylating formin-like proteins.


1987 ◽  
Author(s):  
K T Preissner ◽  
E Anders ◽  
G Müller-Berghaus

The interaction of the complement inhibitor S protein, which is identical to the serum spreading factor, vitronectin, with cultured human endothelial cells of macro- and microvas- cular origin was investigated. Purified S protein, coated for 2 h on polystyrene petri dishes, induced concentration- and time-dependent attachment and spreading of human umbilical vein endothelial cells (HUVEC) as well as human omental tissqe microvasular endothelial cells (HOTMEC) at 37°C. With 3 × 105 cells/ml (final concentration) more than 50% of the cells attached within 2 h incubation at 0.3 - 3 μg/ml S protein. The effect of S protein was specific, since only monospecific antibodies against S protein prevented attachment of cells, while antibodies against fibronectin, fibrinogen or von Wille-brand factor were uneffective. The pentapeptide Gly-Arg-Gly-Asp-Ser, which contains the cell-attachment site of these adhesive proteins including S protein, inhibited the activity of S protein to promote attachment of endothelial cells in a concentration-dependent fashion; at 200 μM peptide, less than 10% of the cells became attached. Direct binding of S protein to HUVEC and HOTMEC was studied with cells in suspension at a concentration of 1 × 106 cells/ml in the presence of 1% (w/v) human serum albumin and 1 mM CaCl2 and was maximal after 120 min. Both cell types bound S protein in a concentration-dependent fashion with an estimated dissociation constant KD=0.2pM. More than 80% of bound radiolabelled S protein was displaced by unlabelled S protein, whereas binding was reduced to about 50% by the addition in excess of either fibronectin, fibrinogen, von Willebrand factor or the pentapeptide. These findings provide evidence for the specific association of S protein with endothelial cells, ultimately leading to attachment and spreading of cells. Although the promotion of attachment was highly specific for S protein, other adhesive proteins than S protein, also known to associate with endothelial cells, may in part compete with direct S protein binding.


2010 ◽  
Vol 8 (1) ◽  
pp. 70-73 ◽  
Author(s):  
Hyungwon Choi ◽  
Brett Larsen ◽  
Zhen-Yuan Lin ◽  
Ashton Breitkreutz ◽  
Dattatreya Mellacheruvu ◽  
...  

1988 ◽  
Vol 34 (3) ◽  
pp. 224-228 ◽  
Author(s):  
Aliza Kalo ◽  
Esther Segal

Findings from our previous studies revealed a correlation between the level of adherence in vitro of Candida albicans to human exfoliated vaginal epithelial cells (VEC) and the hormonal status of the cell donors. In the present study we investigated the effect of the sex hormones estradiol, estriol, progesterone, and testosterone on the binding of the yeasts to HeLa cell lines and VEC in vitro. Monolayers of HeLa cells were exposed to the hormones and yeasts under controlled conditions. The number of adherent yeasts per square millimetre of HeLa cell monolayers and the percentage of VEC with adherent yeasts was estimated by microscopic counts. The results showed that the tested sex hormones affected at various degrees the adhesion of yeasts to HeLa cells or VEC. Progesterone had the most marked effect, leading to a significant increase in the number of adherent yeasts to HeLa cells or in the percentage of adhesion of VEC. In addition, VEC were separated on Percoll gradients into the two cell types: superficial (S) and intermediate (I), cell types which appear physiologically under increased serum levels of estradiol or progesterone, respectively. Adhesion assays with the separated cell populations revealed an increased binding capacity of the I cells. The finding that progesterone increased the adherence of yeasts to genital mucosa and that VEC of the I type have a higher capacity to adhere the yeasts is compatible with our previous observation that increased numbers of I cells, appearing under high level of progesterone, are found in situations known to have predisposition to vaginal candidiasis. Thus, our data point to a possible involvement of the hormone progesterone in the adherence of C. albicans to genital epithelium.


2009 ◽  
Vol 83 (19) ◽  
pp. 10314-10318 ◽  
Author(s):  
Cromwell T. Cornillez-Ty ◽  
Lujian Liao ◽  
John R. Yates ◽  
Peter Kuhn ◽  
Michael J. Buchmeier

ABSTRACT The severe acute respiratory syndrome coronavirus (SARS-CoV) generates 16 nonstructural proteins (nsp's) through proteolytic cleavage of a large precursor protein. Although several nsp's exhibit catalytic activities that are important for viral replication and transcription, other nsp's have less clearly defined roles during an infection. In order to gain a better understanding of their functions, we attempted to identify host proteins that interact with nsp's during SARS-CoV infections. For nsp2, we identified an interaction with two host proteins, prohibitin 1 (PHB1) and PHB2. Our results suggest that nsp2 may be involved in the disruption of intracellular host signaling during SARS-CoV infections.


Sign in / Sign up

Export Citation Format

Share Document