scholarly journals Alternative splicing of the bicistronic gene molybdenum cofactor synthesis 1 (MOCS1) uncovers a novel mitochondrial protein maturation mechanism

2020 ◽  
Vol 295 (10) ◽  
pp. 3029-3039 ◽  
Author(s):  
Simon J. Mayr ◽  
Juliane Röper ◽  
Guenter Schwarz

Molybdenum cofactor (Moco) biosynthesis is a highly conserved multistep pathway. The first step, the conversion of GTP to cyclic pyranopterin monophosphate (cPMP), requires the bicistronic gene molybdenum cofactor synthesis 1 (MOCS1). Alternative splicing of MOCS1 within exons 1 and 9 produces four different N-terminal and three different C-terminal products (type I–III). Type I splicing results in bicistronic transcripts with two open reading frames, of which only the first, MOCS1A, is translated, whereas type II/III splicing produces MOCS1AB proteins. Here, we first report the cellular localization of alternatively spliced human MOCS1 proteins. Using fluorescence microscopy, fluorescence spectroscopy, and cell fractionation experiments, we found that depending on the alternative splicing of exon 1, type I splice variants (MOCS1A) either localize to the mitochondrial matrix (exon 1a) or remain cytosolic (exon 1b). MOCS1A proteins required exon 1a for mitochondrial translocation, but fluorescence microscopy of MOCS1AB variants (types II and III) revealed that they were targeted to mitochondria independently of exon 1 splicing. In the latter case, cell fractionation experiments displayed that mitochondrial matrix import was facilitated via an internal motif overriding the N-terminal targeting signal. Within mitochondria, MOCS1AB underwent proteolytic cleavage resulting in mitochondrial matrix localization of the MOCS1B domain. In conclusion, MOCS1 produces two functional proteins, MOCS1A and MOCS1B, which follow different translocation routes before mitochondrial matrix import for cPMP biosynthesis involving both proteins. MOCS1 protein maturation provides a novel alternative splicing mechanism that ensures the coordinated mitochondrial targeting of two functionally related proteins encoded by a single gene.

2018 ◽  
Author(s):  
Simon Julius Mayr ◽  
Juliane Röper ◽  
Geunter Schwarz

AbstractMolybdenum cofactor biosynthesis is a conserved multistep pathway. The first step, the conversion of GTP to cyclic pyranopterin monophosphate (cPMP), requires bicsistronic MOCS1. Alternative splicing of MOCS1 in exons 1 and 9 produces four different N-terminal and three different C-terminal products (type I-III). Type I splicing results in bicistronic transcripts with two open reading frames, of which only the first, MOCS1A, is translated, whereas type II/III splicing produces two-domain MOCS1AB proteins. Here, we report and characterize the mitochondrial translocation of alternatively spliced MOCS1 proteins. While MOCS1A requires exon 1a for mitochondrial translocation, MOCS1AB variants target to mitochondria via an internal motif overriding the N-terminal targeting signal. Within mitochondria, MOCS1AB undergoes proteolytic cleavage resulting in mitochondrial matrix localization of the MOCS1B domain. In conclusion we found that MOCS1 produces two functional proteins, MOCS1A and MOCS1B, which follow different translocation routes before mitochondrial matrix import, where both proteins collectively catalyze cPMP biosynthesis. MOCS1 protein maturation provides a novel mechanism of alternative splicing ensuring the coordinated targeting of two functionally related mitochondrial proteins encoded by a single gene.


1997 ◽  
Vol 52 (7-8) ◽  
pp. 487-495 ◽  
Author(s):  
K. Department of Chemistry and Biochem ◽  
W. Department of Chemistry and Biochem ◽  
A. Faculty of Biology, University of B

Abstract The cellular localization of the betaine lipids diacylglyceryl-N,N,N-trimethylhomoserine (DGTS) and diacylglycerylhydroxymethyl-N,N,N-trimethyl-β-alanine (DGTA) was investi­ gated by a) chemical analysis of subcellular fractions and b) immunochemical methods using specific antisera and either fluorescence microscopy or electron microscopy for detection of the label. A homogenate of Lycopodium annotinum (Pteridophyta) was fractionated by differential and density gradient centrifugation. The particulate fractions obtained were analyzed for chlorophyll, cyt c oxidase, NADH-cyt c reductase and DGTS. Non-plastidial fractions were enriched in DGTS and only minor amounts of this lipid could be attributed to chloroplasts. Anti-DGTS and anti-DGTA sera were produced by immunization of rabbits. The monospecificity of the antisera was examined with cells of Chlamydomonas reinhardtii (Chlorophyceae) containing DGTS, Pavlova lutheri (Haptophyceae) containing DGTA and Ochromonas danica (Chrysophyceae) containing both DGTS and DGTA. Euglena gracilis which is free of betaine lipids, was used as a control. For the test, a FITC-coupled goat anti-rabbit antibody was used and detected by fluorescence microscopy. Thin sections of Ochromonas and Pavlova were incubated first with the anti-lipid sera and subsequently with a gold-coupled anti-rabbit serum and then examined in the electron microscope. With O chro­ monas, anti-DGTS as well as anti-DGTA sera gave an accumulation of gold label in the cytoplasmic space but not in the chloroplasts. Similar results were obtained with Pavlova using anti-DGTA serum. These results describe for the first time the cytochemical localiza­ tion of DGTS and DGTA strongly suggesting both these lipids to be associated mainly with non-plastidial structures.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
D Oehler ◽  
A Goedecke ◽  
A Spychala ◽  
K Lu ◽  
N Gerdes ◽  
...  

Abstract Background Alternative splicing is a process by which exons within a pre-mRNA are joined or skipped, resulting in isoforms being encoded by a single gene. Alternative Splicing affecting transcription factors may have substantial impact on cellular dynamics. The PPARG Coactivator 1 Alpha (PGC1-α), is a major modulator in energy metabolism. Data from murine skeletal muscle revealed distinctive isoform patterns giving rise to different phenotypes, i.e. mitogenesis and hypertrophy. Here, we aimed to establish a complete dataset of isoforms in murine and human heart applying single-molecule real-time (SMRT)-sequencing as novel approach to identify transcripts without need for assembly, resulting in true full-length sequences. Moreover, we aimed to unravel functional relevance of the various isoforms during experimental ischemia reperfusion (I/R). Methods RNA-Isolation was performed in murine (C57Bl/6J) or human heart tissue (obtained during LVAD-surgery), followed by library preparation and SMRT-Sequencing. Bioinformatic analysis was done using a modified IsoSeq3-Pipeline and OS-tools. Identification of PGC1-α isoforms was fulfilled by similarity search against exonic sequences within the full-length, non-concatemere (FLNC) reads. Isoforms with Open-Reading-Frame (ORF) were manually curated and validated by PCR and Sanger-Sequencing. I/R was induced by ligature of the LAD for 45 min in mice on standard chow as well as on high-fat-high-sucrose diet. Area At Risk (AAR) and remote tissue were collected three and 16 days after I/R or sham-surgery (n=4 per time point). Promotor patterns were analyzed by qPCR. Results Deciphering the full-length transcriptome of murine and human heart resulted in ∼60000 Isoforms with 99% accuracy on mRNA-sequence. Focusing on murine PGC1-α-isoforms we discovered and verified 15 novel transcripts generated by hitherto unknown splicing events. Additionally, we identified a novel Exon 1 originating between the known promoters followed by a valid ORF, suggesting the discovery of a novel promoter. Remarkably, we found a homologous novel Exon1 in human heart, suggesting conservation of the postulated promoter. In I/R the AAR exhibited a significant lower expression of established and novel promoters compared to remote under standard chow 3d post I/R. 16d post I/R, the difference between AAR & Remote equalized in standard chow while remaining under High-Fat-Diet. Conclusion Applying SMRT-technique, we generated the first time a complete full-length-transcriptome of the murine and human heart, identifying 15 novel potentially coding transcripts of PGC1-α and a novel exon 1. These transcripts are differentially regulated in experimental I/R in AAR and remote myocardium, suggesting transcriptional regulation and alternative splicing modulating PGC1-α function in heart. Differences between standard chow and high fat diet suggest impact of impaired glucose metabolism on regulatory processes after myocardial infarction. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Collaborative Research Centre 1116 (German Research Foundation)


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1720
Author(s):  
Kuo-Chieh Liao ◽  
Mariano A. Garcia-Blanco

The importance of transcriptional regulation of host genes in innate immunity against viral infection has been widely recognized. More recently, post-transcriptional regulatory mechanisms have gained appreciation as an additional and important layer of regulation to fine-tune host immune responses. Here, we review the functional significance of alternative splicing in innate immune responses to viral infection. We describe how several central components of the Type I and III interferon pathways encode spliced isoforms to regulate IFN activation and function. Additionally, the functional roles of splicing factors and modulators in antiviral immunity are discussed. Lastly, we discuss how cell death pathways are regulated by alternative splicing as well as the potential role of this regulation on host immunity and viral infection. Altogether, these studies highlight the importance of RNA splicing in regulating host–virus interactions and suggest a role in downregulating antiviral innate immunity; this may be critical to prevent pathological inflammation.


Author(s):  
Siva Arumugam Saravanaperumal ◽  
Stefano Pallotti ◽  
Dario Pediconi ◽  
Carlo Renieri ◽  
Antonietta La Terza

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wen-juan Li ◽  
Yao-hui He ◽  
Jing-jing Yang ◽  
Guo-sheng Hu ◽  
Yi-an Lin ◽  
...  

AbstractNumerous substrates have been identified for Type I and II arginine methyltransferases (PRMTs). However, the full substrate spectrum of the only type III PRMT, PRMT7, and its connection to type I and II PRMT substrates remains unknown. Here, we use mass spectrometry to reveal features of PRMT7-regulated methylation. We find that PRMT7 predominantly methylates a glycine and arginine motif; multiple PRMT7-regulated arginine methylation sites are close to phosphorylations sites; methylation sites and proximal sequences are vulnerable to cancer mutations; and methylation is enriched in proteins associated with spliceosome and RNA-related pathways. We show that PRMT4/5/7-mediated arginine methylation regulates hnRNPA1 binding to RNA and several alternative splicing events. In breast, colorectal and prostate cancer cells, PRMT4/5/7 are upregulated and associated with high levels of hnRNPA1 arginine methylation and aberrant alternative splicing. Pharmacological inhibition of PRMT4/5/7 suppresses cancer cell growth and their co-inhibition shows synergistic effects, suggesting them as targets for cancer therapy.


2001 ◽  
Vol 114 (14) ◽  
pp. 2641-2648
Author(s):  
Jacqueline Franke ◽  
Barbara Reimann ◽  
Enno Hartmann ◽  
Matthias Köhler ◽  
Brigitte Wiedmann

The nascent polypeptide-associated complex (NAC) has been found quantitatively associated with ribosomes in the cytosol by means of cell fractionation or fluorescence microscopy. There have been reports, however, that single NAC subunits may be involved in transcriptional regulation. We reasoned that the cytosolic location might only reflect a steady state equilibrium and therefore investigated the yeast NAC proteins for their ability to enter the nucleus. We found that single subunits of yeast NAC can indeed be transported into the nucleus and that this transport is an active process depending on different nuclear import factors. Translocation into the nucleus was only observed when binding to ribosomes was inhibited. We identified a domain of the ribosome-binding NAC subunit essential for nuclear import via the importin Kap123p/Pse1p-dependent import route. We hypothesize that newly translated NAC proteins travel into the nucleus to bind stoichiometrically to ribosomal subunits and then leave the nucleus together with these subunits to concentrate in the cytosol.


1994 ◽  
Vol 107 (10) ◽  
pp. 2851-2859
Author(s):  
E.C. Joly ◽  
E. Tremblay ◽  
R.M. Tanguay ◽  
Y. Wu ◽  
V. Bibor-Hardy

We have recently reported the cloning of a novel protein, TRiC-P5, with significant homology with protein 1 of the t-complex (TCP1). In the present study, the cellular localization of TRiC-P5 in Raji cells has been determined using an antiserum raised against a 18.5 kDa fusion protein. Results from cell fractionation and immunoblot studies indicate that TRiC-P5 is mainly localized in the cytoplasm. In addition, a significant part of TRiC-P5 is also found in the nucleus where it is attached to the nuclear matrix, a complex filament network involved in essential cellular functions such as DNA replication, and RNA transcription and maturation. Immunofluorescence experiments using the anti-TRiC-P5 antibodies confirm these results. We also provide evidence that, in the cytoplasm, TRiC-P5 is part of a large protein complex, most probably the TCP1-ring complex (TRiC), a hetero-oligomeric ring complex that plays a role of molecular chaperone in the folding of actin and tubulin.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
F Luo ◽  
E Smagris ◽  
J A Fletcher ◽  
J C Cohen ◽  
H H Hobbs

Abstract Background A missense variant in Transmembrane 6 Superfamily Member 2 [TM6SF2 (E167K)] is associated with reduced plasma lipid levels and protection from coronary atherosclerosis. The substitution of lysine for glutamate at residue 167 is associated with a marked decrease in TM6SF2 protein expression, consistent with a loss-of-function mutation. However the biological role of TM6SF2 is not known, and the mechanism(s) responsible for the hypolipidemia associated with mutation gene has not been fully defined. To elucidate the pathological mechanism for the hypolipidemia associated with TM6SF2 deficiency, we inactivated Tm6sf2 in mice and rats. Methods Tm6sf2−/− mice were generated as described previously. Two lines of Tm6sf2−/− rats with different frameshift mutations in exon 1 were generated using CRISPR/Cas9 technology. Primary hepatocytes were isolated from WT and Tm6sf2−/− mice for microscopy. Rats were fasted 16 or 4 hours and tissues were collected on ice for cell fractionation, and in liquid nitrogen for biochemical analyses. Frozen samples were stored at −80°C for subsequent analyses. Result In both mice and rats, inactivation of Tm6sf2 recapitulated the phenotype of humans with the E167K substitution: steatosis, reduced plasma lipid levels, and transaminitis. The phenotype was readily apparent in animals fed chow diets. Both species had reduced secretion of VLDL-TG, as determined by TRITON WR1399 injection, with no decrease in secretion of ApoB. Experiments in isolated perfused livers from WT and Tm6sf2−/− mice confirmed that the decreased TG secretion observed in intact animals reflected reduced TG secretion from the liver. Lipidomic analysis of the liver perfusates by by LC-MS indicated that secretion of cholesteryl esters, and phospholipids was also decreased in the KO animals. Taken together, these findings are consistent with a role for TM6SF2 in lipidation of ApoB-containing lipoproteins. To further elucidate the function of TM6SF2, we used fluorescence microscopy and cell fractionation to determine the subcellular localization of the protein. Microscopic analysis showed that TM6SF2 co-localized with ER and Golgi markers, but cell fractionation studies indicated that the protein is located primarily in the smooth ER. The ratio of TG to ApoB was lower in Golgi fractions from TM6sf2−/− rats than in corresponding fractions from WT animals. Conclusions Since the sequela of TM6SF2 inactivation are already apparent in the Golgi, we speculate that TM6SF2 promotes lipidation of VLDL in a pre-Golgi compartment. We are currently performing additional studies to further define the specific mechanism whereby TM6SF2 promotes lipidation of ApoB-containing lipoproteins. FUNDunding Acknowledgement Type of funding sources: Foundation. Main funding source(s): National Institutes of Health


Sign in / Sign up

Export Citation Format

Share Document