scholarly journals The Normal Force Characteristic of a Novel Magnetorheological Elastomer Based on Butadiene Rubber Matrix Compounded with the Self-Fabricated Silly Putty

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fei Guo ◽  
Chengbin Du ◽  
Guojun Yu

In this paper, a novel magnetorheological elastomer (MRE) was prepared by dispersing carbonyl iron particles (CIPs) into a composite matrix compounded by butadiene rubber (BR) and self-fabricated Silly Putty. The rate-sensitive and magneto-induced characteristics of normal force were experimental investigated to discuss the working mechanism. The results demonstrated that the normal force increased with the compression rate and the mass fraction of boron-silicon copolymer added to the composite matrix due to the formation of the more and more B-O cross bonds which could be blocked in the C-C cross-linked network of BR. Meanwhile, the magneto-induced normal force was positively correlated with the applied magnetic field strength and the compression strain due to the decreased gap between the centers of soft magnetic particles and the increased particle intensity of magnetization. Moreover, the magneto-induced normal force continued to enhance with the increase of compression strain because the CIP chains fixed in the C-C cross-linked network could bend to a radian and CIP chains in B-O cross-linked network could rupture to form more stable and intensive short-chain structures. Besides, a simplified model was deduced to characterize the mechanism of the generation of the magneto-induced normal force. Furthermore, the normal force varied stably with the oscillatory shear strain (less than 9%) at different magnetic induction intensities and suddenly reduced when the applied oscillatory shear strain was more than 9%.

2020 ◽  
Vol 64 (1-4) ◽  
pp. 439-446
Author(s):  
Gildas Diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickaël Lallart ◽  
Jean-Yves Cavaillé

Magneto Rheological Elastomers (MREs) are composite materials based on an elastomer filled by magnetic particles. Anisotropic MRE can be easily manufactured by curing the material under homogeneous magnetic field which creates column of particles. The magnetic and elastic properties are actually coupled making these MREs suitable for energy conversion. From these remarkable properties, an energy harvesting device is considered through the application of a DC bias magnetic induction on two MREs as a metal piece is applying an AC shear strain on them. Such strain therefore changes the permeabilities of the elastomers, hence generating an AC magnetic induction which can be converted into AC electrical signal with the help of a coil. The device is simulated with a Finite Element Method software to examine the effect of the MRE parameters, the DC bias magnetic induction and applied shear strain (amplitude and frequency) on the resulting electrical signal.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2534
Author(s):  
Sriharish Malebennur Nagaraja ◽  
Sven Henning ◽  
Sybill Ilisch ◽  
Mario Beiner

A comparative study focusing on the visco–elastic properties of two series of carbon black filled composites with natural rubber (NR) and its blends with butadiene rubber (NR-BR) as matrices is reported. Strain sweeps at different temperatures are performed. Filler network-related contributions to reinforcement (ΔG′) are quantified by the classical Kraus equation while a modified Kraus equation is used to quantify different contributions to dissipation (ΔGD″, ΔGF″). Results indicate that the filler network is visco-elastic in nature and that it is causing a major part of the composite dissipation at small and intermediate strain amplitudes. The temperature dependence of filler network-related reinforcement and dissipation contributions is found to depend significantly on the rubber matrix composition. We propose that this is due to differences in the chemical composition of the glassy rubber bridges connecting filler particles since the filler network topology is seemingly not significantly influenced by the rubber matrix for a given filler content. The underlying physical picture explains effects in both dissipation and reinforcement. It predicts that these glassy rubber bridges will soften sequentially at temperatures much higher than the bulk Tg of the corresponding rubber. This is hypothetically due to rubber–filler interactions at interfaces resulting in an increased packing density in the glassy rubber related to the reduction of free volume. From a general perspective, this study provides deeper insights towards the molecular origin of reinforcement and dissipation in rubber composites.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 616
Author(s):  
Ján Kruželák ◽  
Andrea Kvasničáková ◽  
Klaudia Hložeková ◽  
Rastislav Dosoudil ◽  
Marek Gořalík ◽  
...  

In the present work, composite materials were prepared by incorporation of manganese-zinc ferrite, carbon black and combination of ferrite and carbon black into acrylonitrile-butadiene rubber (NBR). For cross-linking of composites, standard sulfur-based curing system was applied. The main goal was to investigate the influence of the fillers on the physical-mechanical properties of composites. Then, the electromagnetic absorption shielding ability was investigated in the frequency range 1 MHz–3 GHz. The results revealed that composites filled with ferrite provide sufficient absorption shielding performance in the tested frequency range. On the other hand, ferrite behaves as an inactive filler and deteriorates the physical-mechanical characteristics of composites. Carbon black reinforces the rubber matrix and contributes to the improvement of physical-mechanical properties. However, composites filled with carbon black are not able to absorb electromagnetic radiation in the given frequency range. Finally, the combination of carbon black and ferrite resulted in the modification of both physical-mechanical characteristics and absorption shielding ability of hybrid composites.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2153
Author(s):  
Tengfei Zhang ◽  
Jie Su ◽  
Yuanjie Shu ◽  
Fei Shen ◽  
Liaoliang Ke

Rubbers are widely used in various fields as the important sealing materials, such as window seal, door seal, valve, pump seal, etc. The fretting wear behavior of rubbers has an important effect on their sealing performance. This paper presents an experimental study on the fretting wear behavior of rubbers against the steel ball under air conditions (room temperature at 20 ± 2 °C and humidity at 40%). Three kinds of rubbers, including EPDM (ethylene propylene diene monomer), FPM (fluororubber), and NBR (nitrile–butadiene rubber), are considered in experiments. The sphere-on-flat contact pattern is used as the contact model. The influences of the displacement amplitude, normal force, frequency, and rubber hardness on the fretting wear behavior are discussed in detail. White light profiler and scanning electron microscope (SEM) are used to analyze the wear mechanism of the rubber surface. The fretting wear performances of three rubbers are compared by considering the effect of the displacement amplitude, normal force, frequency, and rubber hardness. The results show that NBR has the most stable friction coefficient and the best wear resistance among the three rubbers.


2021 ◽  
pp. 107754632110253
Author(s):  
Emiliano Rustighi ◽  
Diego F Ledezma-Ramirez ◽  
Pablo E Tapia-Gonzalez ◽  
Neil Ferguson ◽  
Azrul Zakaria

This article proposes a simple physical-based model to describe and predict the performance of axially compressed magnetorheological elastomer cylinders used as vibration and shock absorbers. The model describes the magnetorheological elastomer macroscopic stiffness changes because of an externally applied magnetic field from a microscopic composite cell of silicone rubber and carbonyl iron particle. Despite neglecting the material hyperelasticity, anisotropy and adjacent magnetic interaction, the model describes effectively the effect of the magnetic field on the macroscopic modulus of elasticity. The changes in the mechanical properties with the induced magnetic field are measured on samples of different particle concentration based on volume percentage, that is, 10 and 30 percent concentration of iron particles in a silicone rubber matrix. The manufacturing process of the samples is detailed, as well as the experimental validation of the effective stiffness change under a magnetic field in terms of transmissibility and mobility testing. However, the prediction seems to be limited by the linear elastic material model. Predictions and measurements are compared, showing that the model is capable of predicting the tunability of the dynamic/shock absorber and that the proposed devices have a possible application in the reduction of mechanical vibrations.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2284
Author(s):  
Miaomiao Qian ◽  
Bo Zou ◽  
Zhixiao Chen ◽  
Weimin Huang ◽  
Xiaofeng Wang ◽  
...  

Two factors, the crosslinking degree of the matrix (ν) and the size of the filler (Sz), have significant impact on the Mullins effect of filled elastomers. Herein, the result. of the two factors on Mullins effect is systematically investigated by adjusting the crosslinking degree of the matrix via adding maleic anhydride into a rubber matrix and controlling the particle size of the filler via ball milling. The dissipation ratios (the ratio of energy dissipation to input strain energy) of different filled natural rubber/butadiene rubber (NR/BR) elastomer composites are evaluated as a function of the maximum strain in cyclic loading (εm). The dissipation ratios show a linear relationship with the increase of εm within the test range, and they depend on the composite composition (ν and Sz). With the increase of ν, the dissipation ratios decrease with similar slope, and this is compared with the dissipation ratios increase which more steeply with the increase in Sz. This is further confirmed through a simulation that composites with larger particle size show a higher strain energy density when the strain level increases from 25% to 35%. The characteristic dependence of the dissipation ratios on ν and Sz is expected to reflect the Mullins effect with mathematical expression to improve engineering performance or prevent failure of rubber products.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2413
Author(s):  
Mariapaola Staropoli ◽  
Vincent Rogé ◽  
Enzo Moretto ◽  
Joffrey Didierjean ◽  
Marc Michel ◽  
...  

The improvement of mechanical properties of polymer-based nanocomposites is usually obtained through a strong polymer–silica interaction. Most often, precipitated silica nanoparticles are used as filler. In this work, we study the synergetic effect occurring between dual silica-based fillers in a styrene-butadiene rubber (SBR)/polybutadiene (PBD) rubber matrix. Precipitated Highly Dispersed Silica (HDS) nanoparticles (10 nm) have been associated with spherical Stöber silica nanoparticles (250 nm) and anisotropic nano-Sepiolite. By imaging filler at nano scale through Scanning Transmission Electron Microscopy, we have shown that anisotropic fillers align only in presence of a critical amount of HDS. The dynamic mechanical analysis of rubber compounds confirms that this alignment leads to a stiffer nanocomposite when compared to Sepiolite alone. On the contrary, spherical 250 nm nanoparticles inhibit percolation network and reduce the nanocomposite stiffness.


2011 ◽  
Vol 415-417 ◽  
pp. 237-242
Author(s):  
Zhou Da Zhang ◽  
Xue Mei Chen ◽  
Guo Liang Qu

Calcium carbonate nanoparticles (nano-CaCO3) filled powdered styrene-butadiene rubber (P(SBR/CaCO3) was prepared by adding nano-CaCO3 particles, encapsulant and coagulant to styrene-butadiene rubber (SBR) latex by coacervation, and the particle size distribution, structure were studied. Scanning electron microscopy (SEM) was used to investigate the (P(SBR/CaCO3) particle structure, and a powdering model was proposed to describe the powdering process. The process includes: (i) the latex particles associated with the dispersed nano-CaCO3 particles (adsorption process) to form “new particles” and (ii) the formation of P(SBR/CaCO3) by coagulating “new particles”. The SEM results also shown that the nano-CaCO3 and rubber matrix have formed a macroscopic homogenization in the (P(SBR/CaCO3) particles and nano-CaCO3 dispersed uniformly in the rubber matrix with an average diameter of approximately 50 nm.


2016 ◽  
Vol 403 ◽  
pp. 161-166 ◽  
Author(s):  
Xingyan Yao ◽  
Chuanwen Liu ◽  
Huang Liang ◽  
Huafeng Qin ◽  
Qibing Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document