Effect of maternal diets enriched in sunflower or chia oil on the glycogenic area and the uterine glands secretory granules of the decidua from diabetic rats during early postimplantation

Placenta ◽  
2021 ◽  
Vol 112 ◽  
pp. e41
Author(s):  
Sabrina Lorena Roberti ◽  
Cintia Romina Gatti ◽  
Romina Higa ◽  
Alicia Jawerbaum
Placenta ◽  
2019 ◽  
Vol 83 ◽  
pp. e43
Author(s):  
Sabrina Lorena Roberti ◽  
Hugo Sato ◽  
Cintia Romina Gatti ◽  
Romina Higa ◽  
Alicia Jawerbaum
Keyword(s):  

Author(s):  
E. Horvath ◽  
K. Kovacs ◽  
G. Penz ◽  
C. Ezrin

Follicular structures, in the rat pituitary, composed of cells joined by junctional complexes and possessing few organelles and few, if any, secretory granules, were first described by Farquhar in 1957. Cells of the same description have since been observed in several species including man. The importance of these cells, however, remains obscure. While studying human pituitary glands, we have observed wide variations in the fine structure of follicular cells which may lead to a better understanding of their morphogenesis and significance.


Author(s):  
William J. Dougherty

The regulation of secretion in exocrine and endocrine cells has long been of interest. Electron microscopic and other studies have demonstrated that secretory proteins synthesized on ribosomes are transported by the rough ER to the Golgi complex where they are concentrated into secretory granules. During active secretion, secretory granules fuse with the cell membrane, liberating and discharging their contents into the perivascular spaces. When secretory activity is suppressed in anterior pituitary cells, undischarged secretory granules may be degraded by lysosomes. In the parathyroid gland, evidence indicates that the level of blood Ca ions regulates both the production and release of parathormone. Thus, when serum Ca is low, synthesis and release of parathormone are both stimulated; when serum Ca is elevated, these processes are inhibited.


Author(s):  
Burton B. Silver ◽  
Ronald S. Nelson

Some investigators feel that insulin does not enter cells but exerts its influence in some manner on the cell surface. Ferritin labeling of insulin and insulin antibody was used to determine if binding sites of insulin to specific target organs could be seen with electron microscopy.Alloxanized rats were considered diabetic if blood sugar levels were in excess of 300 mg %. Test reagents included ferritin, ferritin labeled insulin, and ferritin labeled insulin antibody. Target organs examined were were diaphragm, kidney, gastrocnemius, fat pad, liver and anterior pituitary. Reagents were administered through the left common carotid. Survival time was at least one hour in test animals. Tissue incubation studies were also done in normal as well as diabetic rats. Specimens were fixed in gluteraldehyde and osmium followed by staining with lead and uranium salts. Some tissues were not stained.


Author(s):  
Roy Skidmore

The long-necked secretory cells in Onchidoris muricata are distributed in the anterior sole of the foot. These cells are interspersed among ciliated columnar and conical cells as well as short-necked secretory gland cells. The long-necked cells contribute a significant amount of mucoid materials to the slime on which the nudibranch travels. The body of these cells is found in the subepidermal tissues. A long process extends across the basal lamina and in between cells of the epidermis to the surface of the foot. The secretory granules travel along the process and their contents are expelled by exocytosis at the foot surface.The contents of the cell body include the nucleus, some endoplasmic reticulum, and an extensive Golgi body with large numbers of secretory vesicles (Fig. 1). The secretory vesicles are membrane bound and contain a fibrillar matrix. At high magnification the similarity of the contents in the Golgi saccules and the secretory vesicles becomes apparent (Fig. 2).


Author(s):  
R.C. Caughey ◽  
U.P. Kalyan-Raman

Prolactin producing pituitary adenomas are ultrastructurally characterized by secretory granules varying in size (150-300nm), abundance of endoplasmic reticulum, and misplaced exocytosis. They are also subclassified as sparsely or densely granulated according to the amount of granules present. The hormone levels in men and women vary, being higher in men; so also the symptoms vary between both sexes. In order to understand this variation, we studied 21 prolactin producing pituitary adenomas by transmission electron microscope. This was out of a total of 80 pituitary adenomas. There were 6 men and 15 women in this group of 21 prolactinomas.All of the pituitary adenomas were fixed in 2.5% glutaraldehyde, rinsed in Millonig's phosphate buffer, and post fixed with 1% osmium tetroxide. They were then en bloc stained with 0.5% uranyl acetate, rinsed with Walpole's non-phosphate buffer, dehydrated with graded series of ethanols and embedded with Epon 812 epoxy resin.


Author(s):  
S.L. Asa ◽  
K. Kovacs ◽  
J. M. Bilbao ◽  
R. G. Josse ◽  
K. Kreines

Seven cases of lymphocytic hypophysitis in women have been reported previously in association with various degrees of hypopituitarism. We report two pregnant patients who presented with mass lesions of the sella turcica, clinically mimicking pituitary adenoma. However, pathologic examination revealed extensive infiltration of the anterior pituitary by lymphocytes and plasma cells with destruction of the gland. To our knowledge, the ultrastructural features of lymphocytic hypophysitis have not been studied so far.For transmission electron microscopy, tissue from surgical specimens was fixed in glutaraldehyde, postfixed in OsO4, dehydrated and embedded in epoxy-resin. Ultrathin sections were stained with uranyl acetate and lead citrate and examined with a Philips 300 electron microscope.Electron microscopy revealed adenohypophysial cells of all types exhibiting varying degrees of injury. In the areas of most dense inflammatory cell infiltration pituitary cells contained large lysosomal bodies fusing with secretory granules (Fig. 1), as well as increased numbers of swollen mitochondria, indicating oncocytic transformation (Fig. 2).


Author(s):  
Mohinder S. Jarial

The axolotl is a strictly aquatic salamander in which the larval external gills are retained throughout life. The external gills of the adult axolotl have been studied by light and electron microscopy for ultrastructural evidence of ionic transport. The thin epidermis of the gill filaments and gill stems is composed of 3 cell types: granular cells, the basal cells and a sparce population of intervening Leydig cells. The gill epidermis is devoid of muscles, and no mitotic figures were observed in any of its cells.The granular cells cover the gill surface as a continuous layer (Fig. 1, G) and contain secretory granules of different forms, located apically (Figs.1, 2, SG). Some granules are found intimately associated with the apical membrane while others fuse with it and release their contents onto the external surface (Fig. 3). The apical membranes of the granular cells exhibit microvilli which are covered by a PAS+ fuzzy coat, termed “glycocalyx” (Fig. 2, MV).


Author(s):  
Sylvie Polak-Charcon ◽  
Mehrdad Hekmati ◽  
Yehuda Ben Shaul

The epithelium of normal human colon mucosa “in vivo” exhibits a gradual pattern of differentiation as undifferentiated stem cells from the base of the crypt of “lieberkuhn” rapidly divide, differentiate and migrate toward the free surface. The major differentiated cell type of the intestine observed are: absorptive cells displaying brush border, goblet cells containing mucous granules, Paneth and endocrine cells containing dense secretory granules. These different cell types are also found in the intestine of the 13-14 week old embryo.We present here morphological evidence showing that HT29, an adenocarcinoma of the human colon cell line, can differentiate into various cell types by changing the growth and culture conditions and mimic morphological changes found during development of the intestine in the human embryo.HT29 cells grown in tissue-culture dishes in DMEM and 10% FCS form at late confluence a multilayer of morphologically undifferentiated cell culture covered with irregular microvilli, and devoid of tight junctions (Figs 1-3).


Author(s):  
Ellen Holm Nielsen

In secretory cells a dense and complex network of actin filaments is seen in the subplasmalemmal space attached to the cell membrane. During exocytosis this network is undergoing a rearrangement facilitating access of granules to plasma membrane in order that fusion of the membranes can take place. A filamentous network related to secretory granules has been reported, but its structural organization and composition have not been examined, although this network may be important for exocytosis.Samples of peritoneal mast cells were frozen at -70°C and thawed at 4°C in order to rupture the cells in such a gentle way that the granule membrane is still intact. Unruptured and ruptured cells were fixed in 2% paraformaldehyde and 0.075% glutaraldehyde, dehydrated in ethanol. For TEM (transmission electron microscopy) cells were embedded in Lowicryl K4M at -35°C and for SEM (scanning electron microscopy) they were placed on copper blocks, critical point dried and coated. For immunoelectron microscopy ultrathin sections were incubated with monoclonal anti-actin and colloidal gold labelled IgM. Ruptured cells were also placed on cover glasses, prefixed, and incubated with anti-actin and colloidal gold labelled IgM.


Sign in / Sign up

Export Citation Format

Share Document