scholarly journals Enhancement of superexchange due to synergetic breathing and hopping in corner-sharing cuprates

2021 ◽  
Author(s):  
Nikolay A. Bogdanov ◽  
Giovanni Li Manni ◽  
Sandeep Sharma ◽  
Olle Gunnarsson ◽  
Ali Alavi

AbstractCuprates with corner-sharing CuO4 plaquettes have received much attention owing to the discoveries of high-temperature superconductivity and exotic states where spin and charge or spin and orbital degrees of freedom are separated. In these systems spins are strongly coupled antiferromagnetically via superexchange mechanisms, with high nearest-neighbour coupling varying among different compounds. The electronic properties of cuprates are also known to be highly sensitive to the presence, distance and displacement of apical oxygens perpendicular to the CuO2 planes. Here we present ab initio quantum chemistry calculations of the nearest-neighbour superexchange antiferromagnetic (AF) coupling J of two cuprates, Sr2CuO3 and La2CuO4. The former lacks apical oxygens, whilst the latter contain two apical oxygens per CuO2 unit completing a distorted octahedral environment around each Cu atom. Good agreement is obtained with experimental estimates for both systems. Analysis of the correlated wavefunctions together with extended superexchange models shows that there is an important synergetic effect of the Coulomb interaction and the O–Cu hopping, namely a correlated breathing-enhanced hopping mechanism. This is a new ingredient in superexchange models. Suppression of this mechanism leads to drastic reduction in the AF coupling, indicating that it is of primary importance in generating the strong interactions. We also find that J increases substantially as the distance between Cu and apical O is increased.

2021 ◽  
Vol 118 (34) ◽  
pp. e2100608118
Author(s):  
Gang-Hua Deng ◽  
Yuqin Qian ◽  
Tong Zhang ◽  
Jian Han ◽  
Hanning Chen ◽  
...  

Interactions of electronic and vibrational degrees of freedom are essential for understanding excited-states relaxation pathways of molecular systems at interfaces and surfaces. Here, we present the development of interface-specific two-dimensional electronic–vibrational sum frequency generation (2D-EVSFG) spectroscopy for electronic–vibrational couplings for excited states at interfaces and surfaces. We demonstrate this 2D-EVSFG technique by investigating photoexcited interface-active (E)-4-((4-(dihexylamino) phenyl)diazinyl)-1-methylpyridin-1- lum (AP3) molecules at the air–water interface as an example. Our 2D-EVSFG experiments show strong vibronic couplings of interfacial AP3 molecules upon photoexcitation and subsequent relaxation of a locally excited (LE) state. Time-dependent 2D-EVSFG experiments indicate that the relaxation of the LE state, S2, is strongly coupled with two high-frequency modes of 1,529.1 and 1,568.1 cm−1. Quantum chemistry calculations further verify that the strong vibronic couplings of the two vibrations promote the transition from the S2 state to the lower excited state S1. We believe that this development of 2D-EVSFG opens up an avenue of understanding excited-state dynamics related to interfaces and surfaces.


1996 ◽  
Vol 03 (01) ◽  
pp. 223-227 ◽  
Author(s):  
K. EBINA ◽  
H. KAWARABAYASHI ◽  
M. KABURAGI

We develop a simple procedure to calculate the electronic structure of a cluster of hydrogen atoms, taking into account the electron correlations analogously to the induced covalent-bond scheme. The results for H 3 are in fairly good agreement with the precise quantum-chemistry calculations. For H 4 we calculate the ground and excited states of the electron system for various spin states and for various nuclear configurations. We discuss our results by comparing with those for a more simplified Hamiltonian, where the electronic degrees of freedom are represented by the quantum spin operators.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Brandon S. DiNunno ◽  
Niko Jokela ◽  
Juan F. Pedraza ◽  
Arttu Pönni

Abstract We study in detail various information theoretic quantities with the intent of distinguishing between different charged sectors in fractionalized states of large-N gauge theories. For concreteness, we focus on a simple holographic (2 + 1)-dimensional strongly coupled electron fluid whose charged states organize themselves into fractionalized and coherent patterns at sufficiently low temperatures. However, we expect that our results are quite generic and applicable to a wide range of systems, including non-holographic. The probes we consider include the entanglement entropy, mutual information, entanglement of purification and the butterfly velocity. The latter turns out to be particularly useful, given the universal connection between momentum and charge diffusion in the vicinity of a black hole horizon. The RT surfaces used to compute the above quantities, though, are largely insensitive to the electric flux in the bulk. To address this deficiency, we propose a generalized entanglement functional that is motivated through the Iyer-Wald formalism, applied to a gravity theory coupled to a U(1) gauge field. We argue that this functional gives rise to a coarse grained measure of entanglement in the boundary theory which is obtained by tracing over (part) of the fractionalized and cohesive charge degrees of freedom. Based on the above, we construct a candidate for an entropic c-function that accounts for the existence of bulk charges. We explore some of its general properties and their significance, and discuss how it can be used to efficiently account for charged degrees of freedom across different energy scales.


2020 ◽  
Vol 6 (9) ◽  
pp. eaay4213 ◽  
Author(s):  
Yang Hu ◽  
Fred Florio ◽  
Zhizhong Chen ◽  
W. Adam Phelan ◽  
Maxime A. Siegler ◽  
...  

Spin and valley degrees of freedom in materials without inversion symmetry promise previously unknown device functionalities, such as spin-valleytronics. Control of material symmetry with electric fields (ferroelectricity), while breaking additional symmetries, including mirror symmetry, could yield phenomena where chirality, spin, valley, and crystal potential are strongly coupled. Here we report the synthesis of a halide perovskite semiconductor that is simultaneously photoferroelectricity switchable and chiral. Spectroscopic and structural analysis, and first-principles calculations, determine the material to be a previously unknown low-dimensional hybrid perovskite (R)-(−)-1-cyclohexylethylammonium/(S)-(+)-1 cyclohexylethylammonium) PbI3. Optical and electrical measurements characterize its semiconducting, ferroelectric, switchable pyroelectricity and switchable photoferroelectric properties. Temperature dependent structural, dielectric and transport measurements reveal a ferroelectric-paraelectric phase transition. Circular dichroism spectroscopy confirms its chirality. The development of a material with such a combination of these properties will facilitate the exploration of phenomena such as electric field and chiral enantiomer–dependent Rashba-Dresselhaus splitting and circular photogalvanic effects.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 651
Author(s):  
Maxime Perdriat ◽  
Clément Pellet-Mary ◽  
Paul Huillery ◽  
Loïc Rondin ◽  
Gabriel Hétet

Controlling the motion of macroscopic oscillators in the quantum regime has been the subject of intense research in recent decades. In this direction, opto-mechanical systems, where the motion of micro-objects is strongly coupled with laser light radiation pressure, have had tremendous success. In particular, the motion of levitating objects can be manipulated at the quantum level thanks to their very high isolation from the environment under ultra-low vacuum conditions. To enter the quantum regime, schemes using single long-lived atomic spins, such as the electronic spin of nitrogen-vacancy (NV) centers in diamond, coupled with levitating mechanical oscillators have been proposed. At the single spin level, they offer the formidable prospect of transferring the spins’ inherent quantum nature to the oscillators, with foreseeable far-reaching implications in quantum sensing and tests of quantum mechanics. Adding the spin degrees of freedom to the experimentalists’ toolbox would enable access to a very rich playground at the crossroads between condensed matter and atomic physics. We review recent experimental work in the field of spin-mechanics that employ the interaction between trapped particles and electronic spins in the solid state and discuss the challenges ahead. Our focus is on the theoretical background close to the current experiments, as well as on the experimental limits, that, once overcome, will enable these systems to unleash their full potential.


2000 ◽  
Vol 122 (3) ◽  
pp. 147-152 ◽  
Author(s):  
Hui He ◽  
Mohamad Metghalchi ◽  
James C. Keck

A simple model has been developed to estimate the sensible thermodynamic properties such as Gibbs free energy, enthalpy, heat capacity, and entropy of hydrocarbons over a wide range of temperatures with special attention to the branched molecules. The model is based on statistical thermodynamic expressions incorporating translational, rotational and vibrational motions of the atoms. A method to determine the number of degrees of freedom for different motion modes (bending and torsion) has been established. Branched rotational groups, such as CH3 and OH, have been considered. A modification of the characteristic temperatures for different motion mode has been made which improves the agreement with the exact values for simple cases. The properties of branched alkanes up to 2,3,4,-trimthylpentane have been calculated and the results are in good agreement with the experimental data. A relatively small number of parameters are needed in this model to estimate the sensible thermodynamic properties of a wide range of species. The model may also be used to estimate the properties of molecules and their isomers, which have not been measured, and is simple enough to be easily programmed as a subroutine for on-line kinetic calculations. [S0195-0738(00)00902-X]


Author(s):  
Nikolay Bogoliubov ◽  
Jussi Timonen

A quantum phase model is introduced as a limit for very strong interactions of a strongly correlated q -boson hopping model. The exact solution of the phase model is reviewed, and solutions are also provided for two correlation functions of the model. Explicit expressions, including both amplitude and scaling exponent, are derived for these correlation functions in the low temperature limit. The amplitudes were found to be related to the number of plane partitions contained in boxes of finite size.


Author(s):  
Gang Cao ◽  
Lance DeLong

Prior to 2010, most research on the physics and chemistry of transition metal oxides was dominated by compounds of the 3d-transition elements such as Cr, Mn, Fe, Co, Ni, and Cu. These materials exhibited novel, important phenomena that include giant magnetoresistance in manganites, as well as high-temperature superconductivity in doped La2CuO4 and related cuprates. The discovery in 1994 of an exotic superconducting state in Sr2RuO4 shifted some interest toward ruthenates. Moreover, the realization in 2008 that a novel variant of the classic Mott metal-insulator transition was at play in Sr2IrO4 provided the impetus for a burgeoning group of studies of the influence of strong spin-orbit interactions in “heavy” (4d- and 5d-) transition-element oxides. This book reviews recent experimental and theoretical evidence that the physical and structural properties of 4d- and 5d-oxides are decisively influenced by strong spin-orbit interactions that compete or collaborate with comparable Coulomb, magnetic exchange, and crystalline electric field interactions. The combined effect leads to unusual ground states and magnetic frustration that are unique to this class of materials. Novel couplings between the orbital/lattice and spin degrees of freedom, which lead to unusual types of magnetic order and other exotic phenomena, challenge current theoretical models. Of particular interest are recent investigations of iridates and ruthenates focusing on strong spin-orbit interactions that couple the lattice and spin degrees of freedom.


Author(s):  
Jiechi Xu ◽  
Joseph R. Baumgarten

Abstract The application of the systematic procedures in the derivation of the equations of motion proposed in Part I of this work is demonstrated and implemented in detail. The equations of motion for each subsystem are derived individually and are assembled under the concept of compatibility between the local kinematic properties of the elastic degrees of freedom of those connected elastic members. The specific structure under consideration is characterized as an open loop system with spherical unconstrained chains being capable of rotating about a Hooke’s or universal joint. The rigid body motion, due to two unknown rotations, and the elastic degrees of freedom are mutually coupled and influence each other. The traditional motion superposition approach is no longer applicable herein. Numerical examples for several cases are presented. These simulations are compared with the experimental data and good agreement is indicated.


Author(s):  
Jinsang Kim ◽  
Alan Palazzolo

Abstract An approach for incorporating the heat transfer and elastic deformation effects into dynamic coefficient calculation is presented. A global analysis method is used, which finds the equilibrium pad tilt angles at each eccentricity position and includes cross-film variable viscosity, heat transfer effects in the lubricant, elastic deformation, heat conduction effects in the pads, and elastic deformation effect in the pivots. Deflection modes are used to approximate deformation of the top surface of the pads. The dynamic coefficients of a single pad are calculated at the equilibrium state of the bearing, based on numerical perturbation with respect to the bearing degrees of freedom. These include journal position, pad rotation, pivot deformation, and modal coordinates. The stiffness and damping coefficients are calculated and show very good agreement with experimental and numerical results from the existing literature.


Sign in / Sign up

Export Citation Format

Share Document