Atmospheric Circulation of Tide-Locked Exoplanets

2019 ◽  
Vol 51 (1) ◽  
pp. 275-303 ◽  
Author(s):  
Raymond T. Pierrehumbert ◽  
Mark Hammond

Tide-locked planets are planets in which tidal stresses from the host star have spun down the planet's rotation to the point where its length of sidereal day equals its length of year. In a nearly circular orbit, such planets have a permanent dayside and a permanent nightside, leading to extreme heating contrasts. In this article, the atmospheric circulations forced by this heating contrast are explored, with a focus on terrestrial planets; here, “terrestrial” refers to planets with a condensed solid or liquid surface at which most of the incident stellar radiation is absorbed and does not imply habitability in the Earthlike sense. The census of exoplanets contains many terrestrial planets that are very likely to be tide locked, including extremely hot close-orbit planets around Sunlike stars and habitable zone (and hotter) planets around lower-mass stars. The circulations are discussed in terms of fluid dynamical concepts arising from study of the Earth's tropics, supplemented by general circulation model simulations. Even in the relatively simple context of dry (noncondensing) dynamics, there are a number of important unresolved issues that require further study.

2009 ◽  
Vol 699 (1) ◽  
pp. 564-584 ◽  
Author(s):  
Adam P. Showman ◽  
Jonathan J. Fortney ◽  
Yuan Lian ◽  
Mark S. Marley ◽  
Richard S. Freedman ◽  
...  

Author(s):  
Raymond T. Pierrehumbert ◽  
Feng Ding

The diversity of characteristics for the host of recently discovered exoplanets opens up a great deal of fertile new territory for geophysical fluid dynamics, particularly when the fluid flow is coupled to novel thermodynamics, radiative transfer or chemistry. In this paper, we survey one of these new areas—the climate dynamics of atmospheres with a non-dilute condensible component, defined as the situation in which a condensible component of the atmosphere makes up a substantial fraction of the atmospheric mass within some layer. Non-dilute dynamics can occur for a wide range of condensibles, generically applying near both the inner and the outer edges of the conventional habitable zone and in connection with runaway greenhouse phenomena. It also applies in a wide variety of other planetary circumstances. We first present a number of analytical results developing some key features of non-dilute atmospheres, and then show how some of these features are manifest in simulations with a general circulation model adapted to handle non-dilute atmospheres. We find that non-dilute atmospheres have weak horizontal temperature gradients even for rapidly rotating planets, and that their circulations are largely barotropic. The relative humidity of the condensible component tends towards 100% as the atmosphere becomes more non-dilute, which has important implications for runaway greenhouse thresholds. Non-dilute atmospheres exhibit a number of interesting organized convection features, for which there is not yet any adequate theoretical understanding.


Sign in / Sign up

Export Citation Format

Share Document