scholarly journals A Driving Method for Reducing Oil Film Splitting in Electrowetting Displays

Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 920
Author(s):  
Wenjun Zeng ◽  
Zichuan Yi ◽  
Yiming Zhao ◽  
Li Wang ◽  
Jitao Zhang ◽  
...  

Electrowetting displays (EWDs) are one of the most potential electronic papers. However, they have the problem of oil film splitting, which could lead to a low aperture ratio of EWDs. In this paper, a driving waveform was proposed to reduce oil film splitting. The driving waveform was composed of a rising stage and a driving stage. First, the rupture voltage of oil film was analyzed by testing the voltage characteristic curve of EWDs. Then, a quadratic function waveform with an initial voltage was applied at the rising stage to suppress oil film splitting. Finally, a square wave was applied at the driving stage to maintain the aperture ratio of EWDs. The experimental results show that the luminance was increased by 8.78% and the aperture ratio was increased by 4.47% compared with an exponential function driving waveform.

Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 313 ◽  
Author(s):  
Zichuan Yi ◽  
Zhenyu Huang ◽  
Shufa Lai ◽  
Wenyao He ◽  
Li Wang ◽  
...  

The traditional driving waveform of the electrowetting display (EWD) has many disadvantages, such as the large oscillation of the target grayscale aperture ratio and a long time for achieving grayscale. Therefore, a driving waveform based on the exponential function was proposed in this study. First, the maximum driving voltage value of 30 V was obtained by testing the hysteresis curve of the EWD pixel unit. Secondly, the influence of the time constant on the driving waveform was analyzed, and the optimal time constant of the exponential function was designed by testing the performance of the aperture ratio. Lastly, an EWD panel was used to test the driving effect of the exponential-function-driving waveform. The experimental results showed that a stable grayscale and a short driving time could be realized when the appropriate time constant value was designed for driving EWDs. The aperture ratio oscillation range of the gray scale could be reduced within 0.95%, and the driving time of a stable grayscale was reduced by 30% compared with the traditional driving waveform.


A technique using Newton’s rings for mapping the oil film of lubricated point contacts is described. A theoretical value for the film thickness of such contacts in elastohydrodynamic lubrication is derived. The experimental results give the exit constriction predicted by previous theory but never shown in detail. The comparison of theoretical and experimental oil film thicknesses, which is satisfactorily accurate, gives strong evidence for a viscous surface layer some 1000Å thick. This film agrees with the known ‘lubricating power’ of the various oils tested.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiaoxiao Qian ◽  
Cheng Tang ◽  
Yuki Todo ◽  
Qiuzhen Lin ◽  
Junkai Ji

In this paper, an evolutionary dendritic neuron model (EDNM) is proposed to solve classification problems. It utilizes synapses and dendritic branches to implement the nonlinear computation. Distinct from the classical dendritic neuron model (CDNM) trained by the backpropagation (BP) algorithm, the proposed EDNM is trained by a metaheuristic cuckoo search (CS) algorithm instead, which has been regarded as a global searching algorithm. CS algorithm enables EDNM to avoid several disadvantages, such as slow convergence, trapping into local minimum, and being sensitive to initial values. To evaluate the performance of EDNM, we compare it with a multilayer perceptron (MLP) and CDNM on two benchmark classification problems. The experimental results demonstrate that EDNM is superior to MLP and CDNM in terms of accuracy rate, receiver operator characteristic curve (ROC), and convergence speed. In addition, the neural structure of EDNM can be replaced by a logical circuit completely, which can be implemented in hardware easily. The corresponding experimental results also verify the effectiveness of the logical circuit classifier.


Micromachines ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 862 ◽  
Author(s):  
Zichuan Yi ◽  
Wenyong Feng ◽  
Li Wang ◽  
Liming Liu ◽  
Yue Lin ◽  
...  

Electrowetting display (EWD) performance is severely affected by ink distribution and charge trapping in pixel cells. Therefore, a multi structural driving waveform is proposed for improving the aperture ratio of EWDs. In this paper, the hysteresis characteristic (capacitance–voltage, C-V) curve of the EWD pixel is tested and analyzed for obtaining the driving voltage value at the inflection point of the driving waveform. In the composition of driving waveform, a voltage slope is designed for preventing ink dispersion and a reverse pulse is designed for releasing the trapped charge which is caused by hysteresis characteristic. Finally, the frequency and the duty cycle of the driving waveform are optimized for the max aperture ratio by a series of testing. The experimental results show that the proposed driving waveform can improve the ink dispersion behavior, and the aperture ratio of the EWD is about 8% higher than the conventional driving waveform. At the same time, the response speed of the driving waveform can satisfy the dynamic display in EWDs, which provides a new idea for the design of the EWD driving scheme.


2013 ◽  
Vol 798-799 ◽  
pp. 157-160
Author(s):  
You Le Wang ◽  
Dong Fang Tian ◽  
Gai Qing Dai ◽  
Yao Ruan ◽  
Lang Tian

A new soil water characteristic curve (SWCC) model considering urea concentration is presented in the paper. Two assumptions are used to obtain the model. One is SWCC which could be described by exponential functions in the experiments. Another is relationship between the parameters of exponential functions and urea concentration which is linear based on experimental data. In the research, we have carried out some experiments of SWCC and obtained some valuable data which could affect urea concentration. By using linear fitting, an exponential function between water content and suction and urea concentration is established.


1976 ◽  
Vol 190 (1) ◽  
pp. 627-633 ◽  
Author(s):  
H. McCallion ◽  
D. R. Wales

SYNOPSIS A computer program representing a shaft and rotor whirling in bearings which allows for realistic oil film boundary conditions and non-circular bearing profiles has been developed. It gave good agreement with experimental results published by Brown and France. With the aim of increasing understanding of the influence of bearing profile on system instability, the program calculates the timewise variation of the energy in translational motion supplied to the rotor by oil film forces. One case is illustrated.


Author(s):  
J. P. O'Donoghue ◽  
P. R. Koch ◽  
C. J. Hooke

This paper outlines a new approximate theory for liquid lubricated plain journal bearings with elastic liners. This is a modified form of Ocvirk's theory and includes the effect of circumferential flow. The results of a series of tests on short plastic bearings are presented to compare with the theoretical predictions of the new theory. The authors conclude that for short bearings the theory gives reasonably good predictions of performance, but the elasticity assumptions cause major errors for length/diameter ratios greater than 0·5 due to the decrease in oil film thickness that occurs near the ends of the bearing. The approximate solution adopted for the hydrodynamic problem may be of use for considering dynamic conditions taking the Reynolds conditions for cavitation.


Author(s):  
А.С. Саидов ◽  
А.Ю. Лейдерман ◽  
Ш.Н. Усмонов ◽  
К.А. Амонов

AbstractThe current–voltage characteristics of p -Si– n -(Si_2)_1 –_ x (ZnSe)_ x (0 ≤ x ≤ 0.01) heterostructures are studied at various temperatures. It is found that the current–voltage characteristics of such structures contain a portion of a sublinear increase in the current with voltage such as V = V _0 exp( Jad ). The concentrations of deep impurities responsible for the appearance of the sublinear portion in the current–voltage characteristic are estimated. The experimental results are explained based on the theory of the injection depletion effect.


2021 ◽  
Vol 16 (3) ◽  
pp. 351-356
Author(s):  
Li Wang ◽  
Yi-Fan Zhang ◽  
Ji-Tao Zhang ◽  
Qi-Ming Wan ◽  
Peng-Chang Ma

The speed of updating an image is very important for an electrophoretic display (EPD) application, but the flicker which can be produced among the process of updating an image is a main factor of affecting reading comfort for human eyes. In this paper, a new driving waveform, which was based on DC balance, was proposed to reduce the number of flicker and decrease the driving time for updating an image. Firstly, we studied properties of particles in the EPD, and the stages in the driving waveform were fused according to the driving properties of the particles. Secondly, an accurate reference was formed in the driving waveform for writing a new image, and the particle activity was guaranteed at the same time. Lastly, the driving waveform was downloaded to a real EPD waveform look-up table and the performance was compared with traditional driving waveforms. Experimental results showed that the proposed driving waveform could reduce flicker effectively and shorten the driving time by 25%, and an accurate white reference gray scale was obtained for displaying high quality images.


Sign in / Sign up

Export Citation Format

Share Document