biosensor arrays
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 8)

H-INDEX

19
(FIVE YEARS 2)

Nanoscale ◽  
2020 ◽  
Vol 12 (28) ◽  
pp. 15336-15347 ◽  
Author(s):  
Sushmitha Veeralingam ◽  
Sushmee Badhulika

X-Functionalized tunable MoS2 nanostructure assembled biosensor arrays for qualitative and quantitative analysis.


2019 ◽  
Vol 25 (1) ◽  
pp. 33-46 ◽  
Author(s):  
James K. Nolan ◽  
Tran N. H. Nguyen ◽  
Khanh Vy H. Le ◽  
Luke E. DeLong ◽  
Hyowon Lee

Simultaneous measurements of glucose, lactate, and neurotransmitters (e.g., glutamate) in cell culture over hours and days can provide a more dynamic and longitudinal perspective on ways neural cells respond to various drugs and environmental cues. Compared with conventional microfabrication techniques, direct writing of conductive ink is cheaper, faster, and customizable, which allows rapid iteration for different applications. Using a simple direct writing technique, we printed biosensor arrays onto cell culture dishes, flexible laminate, and glass to enable multianalyte monitoring. The ink was a composite of PEDOT:PSS conductive polymer, silicone, activated carbon, and Pt microparticles. We applied 0.5% Nafion to the biosensors for selectivity and functionalized them with oxidase enzymes. We characterized biosensors in phosphate-buffered saline and in cell culture medium supplemented with fetal bovine serum. The biosensor arrays measured glucose, lactate, and glutamate simultaneously and continued to function after incubation in cell culture at 37 °C for up to 2 days. We cultured primary human astrocytes on top of the biosensor arrays and placed arrays into astrocyte cultures. The biosensors simultaneously measured glucose, glutamate, and lactate from astrocyte cultures. Direct writing can be integrated with microfluidic organ-on-a-chip platforms or as part of a smart culture dish system. Because we print extrudable and flexible components, sensing elements can be printed on any 3D or flexible substrate.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4795 ◽  
Author(s):  
Hui Wang ◽  
Pankaj Ramnani ◽  
Tung Pham ◽  
Claudia Chaves Villarreal ◽  
Xuejun Yu ◽  
...  

Volatile organic compounds (VOCs) released by plants are closely associated with plant metabolism and can serve as biomarkers for disease diagnosis. Huanglongbing (HLB), also known as citrus greening or yellow shoot disease, is a lethal threat to the multi-billion-dollar citrus industry. Early detection of HLB is vital for removal of susceptible citrus trees and containment of the disease. Gas sensors are applied to monitor the air quality or toxic gases owing to their low-cost fabrication, smooth operation, and possible miniaturization. Here, we report on the development, characterization, and application of electrical biosensor arrays based on single-walled carbon nanotubes (SWNTs) decorated with single-stranded DNA (ssDNA) for the detection of four VOCs—ethylhexanol, linalool, tetradecene, and phenylacetaldehyde—that serve as secondary biomarkers for detection of infected citrus trees during the asymptomatic stage. SWNTs were noncovalently functionalized with ssDNA using π–π interaction between the nucleotide and sidewall of SWNTs. The resulting ssDNA-SWNT hybrid structure and device properties were investigated using Raman spectroscopy, ultraviolet (UV) spectroscopy, and electrical measurements. To monitor changes in the four VOCs, gas biosensor arrays consisting of bare SWNTs before and after being decorated with different ssDNA were employed to determine the different concentrations of the four VOCs. The data was processed using principal component analysis (PCA) and neural net fitting (NNF).


2019 ◽  
Vol 5 (8) ◽  
pp. eaax0729 ◽  
Author(s):  
Anna Kalmykov ◽  
Changjin Huang ◽  
Jacqueline Bliley ◽  
Daniel Shiwarski ◽  
Joshua Tashman ◽  
...  

Cell-cell communication plays a pivotal role in coordination and function of biological systems. Three-dimensional (3D) spheroids provide venues to explore cellular communication for tissue development and drug discovery, as their 3D architecture mimics native in vivo microenvironments. Cellular electrophysiology is a prevalent signaling paradigm for studying electroactive cells. Currently, electrophysiological studies do not provide direct, multisite, simultaneous investigation of tissues in 3D. In this study, 3D self-rolled biosensor arrays (3D-SR-BAs) of either active field-effect transistors or passive microelectrodes were implemented to interface human cardiac spheroids in 3D. The arrays provided continuous and stable multiplexed recordings of field potentials with high sensitivity and spatiotemporal resolution, supported with simultaneous calcium imaging. Our approach enables electrophysiological investigation and monitoring of the complex signal transduction in 3D cellular assemblies toward an organ-on-an-electronic-chip (organ-on-e-chip) platform for tissue maturation investigations and development of drugs for disease treatment, such as arrhythmias.


2019 ◽  
Vol 15 ◽  
pp. P682-P682
Author(s):  
Aynun N. Begum ◽  
Maksudul M. Alam ◽  
Anamika Ray ◽  
Uma Sampathkumaran ◽  
Yifan Tang ◽  
...  

Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 394 ◽  
Author(s):  
Mohamed Sharafeldin ◽  
Abby Jones ◽  
James Rusling

While the technology is relatively new, low-cost 3D printing has impacted many aspects of human life. 3D printers are being used as manufacturing tools for a wide variety of devices in a spectrum of applications ranging from diagnosis to implants to external prostheses. The ease of use, availability of 3D-design software and low cost has made 3D printing an accessible manufacturing and fabrication tool in many bioanalytical research laboratories. 3D printers can print materials with varying density, optical character, strength and chemical properties that provide the user with a vast array of strategic options. In this review, we focus on applications in biomedical diagnostics and how this revolutionary technique is facilitating the development of low-cost, sensitive, and often geometrically complex tools. 3D printing in the fabrication of microfluidics, supporting equipment, and optical and electronic components of diagnostic devices is presented. Emerging diagnostics systems using 3D bioprinting as a tool to incorporate living cells or biomaterials into 3D printing is also reviewed.


Sign in / Sign up

Export Citation Format

Share Document