scholarly journals Overexpression of OsCASP1 Improves Calcium Tolerance in Rice

2021 ◽  
Vol 22 (11) ◽  
pp. 6002
Author(s):  
Zhigang Wang ◽  
Zhiwei Chen ◽  
Xiang Zhang ◽  
Qiuxing Wei ◽  
Yafeng Xin ◽  
...  

The Casparian strip domain protein 1 (OsCASP1) is necessary for the formation of the Casparian strip (CS) in the rice endodermis. It also controls Ca2+ transport to the stele. Here, we demonstrated that OsCASP1 overexpression enhanced Ca tolerance in rice. Under normal conditions, OsCASP1-overexpressed lines showed similar concentrations of essential metals in the roots and shoots compared to the wild type, while under high Ca conditions, Ca in the roots, shoots, and xylem sap of the OsCASP1-overexpressed lines was significantly decreased. This did not apply to other essential metals. Ca-inhibited growth was significantly alleviated in the OsCASP1-overexpressed lines. Furthermore, OsCASP1 overexpression resulted in earlier formation of both the CS and functional apoplastic barrier in the endodermis but did not induce ectopic CS formation in non-endodermal cell layers and affect suberin accumulation in the endodermis. These results indicate that the overexpression of OsCASP1 promotes CS formation in endodermal cells and inhibits Ca2+ transport by the apoplastic pathway, restricting Ca accumulation in the roots and shoots under high Ca conditions. Taken together, the results suggest that OsCASP1 overexpression is an effective way to improve rice adaptation to high Ca environments.

2015 ◽  
Vol 112 (33) ◽  
pp. 10533-10538 ◽  
Author(s):  
Takehiro Kamiya ◽  
Monica Borghi ◽  
Peng Wang ◽  
John M. C. Danku ◽  
Lothar Kalmbach ◽  
...  

The endodermis in roots acts as a selectivity filter for nutrient and water transport essential for growth and development. This selectivity is enabled by the formation of lignin-based Casparian strips. Casparian strip formation is initiated by the localization of the Casparian strip domain proteins (CASPs) in the plasma membrane, at the site where the Casparian strip will form. Localized CASPs recruit Peroxidase 64 (PER64), a Respiratory Burst Oxidase Homolog F, and Enhanced Suberin 1 (ESB1), a dirigent-like protein, to assemble the lignin polymerization machinery. However, the factors that control both expression of the genes encoding this biosynthetic machinery and its localization to the Casparian strip formation site remain unknown. Here, we identify the transcription factor, MYB36, essential for Casparian strip formation. MYB36 directly and positively regulates the expression of the Casparian strip genes CASP1, PER64, and ESB1. Casparian strips are absent in plants lacking a functional MYB36 and are replaced by ectopic lignin-like material in the corners of endodermal cells. The barrier function of Casparian strips in these plants is also disrupted. Significantly, ectopic expression of MYB36 in the cortex is sufficient to reprogram these cells to start expressing CASP1–GFP, correctly localize the CASP1–GFP protein to form a Casparian strip domain, and deposit a Casparian strip-like structure in the cell wall at this location. These results demonstrate that MYB36 is controlling expression of the machinery required to locally polymerize lignin in a fine band in the cell wall for the formation of the Casparian strip.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guilhem Reyt ◽  
Priya Ramakrishna ◽  
Isai Salas-González ◽  
Satoshi Fujita ◽  
Ashley Love ◽  
...  

AbstractLignin is a complex polymer deposited in the cell wall of specialised plant cells, where it provides essential cellular functions. Plants coordinate timing, location, abundance and composition of lignin deposition in response to endogenous and exogenous cues. In roots, a fine band of lignin, the Casparian strip encircles endodermal cells. This forms an extracellular barrier to solutes and water and plays a critical role in maintaining nutrient homeostasis. A signalling pathway senses the integrity of this diffusion barrier and can induce over-lignification to compensate for barrier defects. Here, we report that activation of this endodermal sensing mechanism triggers a transcriptional reprogramming strongly inducing the phenylpropanoid pathway and immune signaling. This leads to deposition of compensatory lignin that is chemically distinct from Casparian strip lignin. We also report that a complete loss of endodermal lignification drastically impacts mineral nutrients homeostasis and plant growth.


2003 ◽  
Vol 285 (5) ◽  
pp. H2240-H2247 ◽  
Author(s):  
Elizabeth A. Nunamaker ◽  
Hai-Ying Zhang ◽  
Yuichi Shirasawa ◽  
Joseph N. Benoit ◽  
David A. Dean

The development of inexpensive and effective approaches to transiently decrease gene expression in vivo would be useful for the study of physiological processes in living animals. DNAzymes are a novel class of DNA oligonucleotides that can catalytically cleave target mRNAs and thereby reduce protein production. However, current methods for their delivery in vivo are limited and inefficient. In this study, we show that electroporation can be used to deliver DNAzymes to the intact mesenteric vasculature of rats. With the use of PKC-ϵ as a target, a set of wild-type and mutant control DNAzymes was designed and shown to reduce both PKC-ϵ mRNA and protein levels in cultured smooth muscle cells in a specific manner. The wild-type DNAzyme reduced PKC-ϵ protein levels by 70% at 24 h in two different cell lines without decreasing the levels of the five other PKC isoforms tested. When delivered to the intact vasculature using electroporation, the DNAzyme reduced PKC-ϵ protein levels by >60% without affecting these other PKC isoforms. Electroporation was required for oligonucleotide transfer and was able to deliver the DNAzymes to multiple cell layers in the vessel wall. Protein levels were reduced maximally by 24 h postelectroporation and returned to normal by 48 h. These results suggest that electroporation can be used to deliver DNAzymes and other DNA oligonucleotides to the vasculature in vivo and can decrease gene expression for a window of time that can be used for experimental studies.


2006 ◽  
Vol 33 (3) ◽  
pp. 289 ◽  
Author(s):  
Ling-Ling Gao ◽  
F. Andrew Smith ◽  
Sally E. Smith

A tomato mutant with reduced mycorrhizal colonisation, rmc, confers resistance to almost all arbuscular mycorrhizal (AM) fungal species tested, although there is variation in colonisation of different root cell layers by different fungi and one species of AM fungus can colonise this mutant relatively normally. These variations indicate a high degree of specificity in relation to AM colonisation. We explored the possibility of specificity or otherwise in interactions between rmc and three non-AM root-infecting fungi, Rhizoctonia solani anastomosis groups (AG) 4 and AG8, and binucleate Rhizoctonia (BNR). There were no differences between the wild type tomato 76R and rmc in the speed or extent to which these fungi infected roots or caused disease. Infection by R. solani induced high levels of defence-related gene expression in both tomato genotypes relative to non-infected plants. In contrast, with BNR the expression of these genes was not induced or induced to a much lower extent than with R. solani. The expression of defence-related genes with these two non-AM fungi was very similar in the two plant genotypes. It was different from effects observed during colonisation by AM fungi, which enhanced expression of defence-related genes in rmc compared with the wild type tomato. The specificity and molecular mechanisms of rmc in control of AM colonisation are discussed.


2008 ◽  
Vol 51 (1) ◽  
pp. 83-93 ◽  
Author(s):  
Ana Sílvia Franco Pinheiro Moreira ◽  
Rosy Mary dos Santos Isaias

The present study compared roots of terrestrial and epiphytic Orchidaceae, analyzing the anatomical characteristics from an ecological point of view. The material was collected at three different sites in Minas Gerais / Brazil and was fixed in FAA. Transverse sections were obtained by freehand sections or from material previously embedded in Paraplast® or Historesin®. The prominent characteristics of the epiphytic group were: significant smaller perimeter, epidermis with 3 or more cell layers, U-thickened exodermal cell walls, O-thickened endodermal cell walls, and a low ratio between the caliber and the number of protoxylem arches. The terrestrial group presented simple or multiseriate epidermis, and exodermis and endodermis with typical Casparian strips. The anatomical characteristics should have evolved with several adaptations to distinct environments during evolutionary process.


1971 ◽  
Vol 49 (1) ◽  
pp. 35-38 ◽  
Author(s):  
E. B. Dumbroff ◽  
D. R. Peirson

The endodermis, with its associated Casparian strip, is generally believed to act as an effective barrier to the passive movement of ions from the cortex to the xylem in young roots. However, several workers have suggested that the functional integrity of the endodermis might be somewhat impaired with the emergence of branch roots from the pericycle, thus providing pathways for the mass flow of water and ions into the stele. The present work was undertaken to examine the validity of this hypothesis.Sections of lateral roots embedded in glycol methacrylate were stained and examined by fluorescence microscopy, and a general picture of the relationship between branch root development and concomitant changes in the endodermis emerged. The endodermal cells of the parent root were found to maintain a continuous, unbroken, suberized layer over the surface of a very young lateral root, but with continued elongation there is a period when formation of the Casparian strip lags behind division of endodermal cells. It appears likely that, at this stage, water and ions can enter the stele of the parent root by mass flow.


Planta ◽  
2001 ◽  
Vol 213 (3) ◽  
pp. 474-477 ◽  
Author(s):  
Masaki Yokoyama ◽  
Ichirou Karahara

1969 ◽  
Vol 47 (12) ◽  
pp. 1869-1871 ◽  
Author(s):  
D. R. Peirson ◽  
E. B. Dumbroff

A new combination of embedding material and high contrast stain has provided the means for demonstrating, photographically, tangential sections of endodermal cells showing complete Casparian strips.


2020 ◽  
Author(s):  
Stratton Georgoulis ◽  
Katie E. Shalvarjian ◽  
Tyler C. Helmann ◽  
Corri D. Hamilton ◽  
Hans K. Carlson ◽  
...  

AbstractPlant pathogenic Ralstonia spp. colonize plant xylem and cause wilt diseases on a broad range of host plants. To identify genes that promote growth of diverse Ralstonia strains in xylem sap from tomato plants, we performed genome-scale genetic screens (random barcoded transposon mutant sequencing screens; RB-TnSeq) in Ralstonia pseudosolanacearum GMI1000 and R. syzygii PSI07. Contrasting mutant fitness phenotypes in culture media versus in xylem sap suggest that Ralstonia strains are adapted to sap and that culture media impose foreign selective pressures. Although wild-type Ralstonia grew in sap and in rich medium with similar doubling times and to a similar carrying capacity, more genes were essential for growth in sap than in rich medium. Multiple mutants lacking amino acid biosynthesis and central metabolism functions had fitness defects in xylem sap and minimal medium. Our screen identified > 26 genes in each strain that contributed to growth in xylem sap but were dispensable for growth in culture media. Many sap-specific fitness factors are associated with bacterial stress responses: envelope remodeling and repair processes such as peptidoglycan peptide formation (murI and RSc1177), LPS O-antigen biosynthesis (RSc0684), periplasmic protein folding (dsbA), drug efflux (tolA and tolR), and stress responses (cspD3). Our genome-scale genetic screen identified Ralstonia fitness factors that promote growth in xylem sap, an ecologically relevant condition.ImportanceTraditional transposon mutagenesis genetic screens pioneered molecular plant pathology and identified core virulence traits like the type III secretion system. TnSeq approaches that leverage next-generation sequencing to rapidly quantify transposon mutant phenotypes are ushering in a new wave of biological discovery. Here we have adapted a genome-scale approach, random barcoded transposon mutant sequencing (RB-TnSeq), to discover fitness factors that promote growth of two related bacterial strains in a common niche, tomato xylem sap. Fitness of wild-type and mutants show that Ralstonia spp. are adapted to grow well in xylem sap from their natural host plant, tomato. Our screen identified multiple sap-specific fitness factors with roles in maintaining the bacterial envelope. These factors are putative adaptations to resist plant defenses, including antimicrobial proteins and specialized metabolites that damage bacterial membranes.


2020 ◽  
Author(s):  
Jeong Im Kim ◽  
Christopher Hidalgo-Shrestha ◽  
Nicholas D. Bonawitz ◽  
Rochus B. Franke ◽  
Clint Chapple

ABSTRACTCinnamate 4-hydroxylase (C4H) is a cytochrome P450-dependent monooxygenase that catalyzes the second step of the general phenylpropanoid pathway. Arabidopsis reduced epidermal fluorescence 3 (ref3) mutants, which carry hypomorphic mutations in C4H, exhibit global alterations in phenylpropanoid biosynthesis and have developmental abnormalities including dwarfing. Here we report the characterization of a conditional Arabidopsis C4H line (ref3-2pOpC4H), in which wild-type C4H is expressed in the ref3-2 background. Expression of C4H in plants with well-developed primary inflorescence stems resulted in restoration of fertility and the production of substantial amounts of lignin, revealing that the developmental window for lignification is remarkably plastic. Following induction of C4H expression in ref3-2pOpC4H, we observed rapid and significant reductions in the levels of numerous metabolites, including several benzoyl and cinnamoyl esters and amino acid conjugates. These atypical conjugates were quickly replaced with their sinapoylated equivalents, suggesting that phenolic esters are subjected to substantial amounts of turnover in wild-type plants. Furthermore, using localized application of dexamethasone to ref3-2pOpC4H, we show that phenylpropanoids are not transported appreciably from their site of synthesis. Finally, we identified a defective Casparian strip diffusion barrier in the ref3-2 mutant root endodermis, which is restored by induction of C4H expression.HighlightThe work presented this paper provides evidence of metabolite turnover, plasticity of the developmental window for lignification, and the impact of reduced and restored cinnamate-4-hydroxylase (C4H) expression on the Casparian strip.


Sign in / Sign up

Export Citation Format

Share Document