scholarly journals Rice leaves undergo a rapid metabolic reconfiguration during a specific stage of primordium development

2021 ◽  
Author(s):  
Naomi Cox ◽  
Heather J Walker ◽  
James Pitman ◽  
W Paul Quick ◽  
Lisa M Smith ◽  
...  

Leaf development is crucial to establish the photosynthetic competency of plants. It is a process that requires coordinated changes in cell number, cell differentiation, transcriptomes, metabolomes and physiology. However, despite the importance of leaf formation for our major crops, early developmental processes for rice have not been comprehensively described. Here we detail the temporal developmental trajectory of early rice leaf development and connect morphological changes to metabolism. In particular, a developmental index based on the patterning of epidermal differentiation visualised by electron microscopy enabled high resolution staging of early growth for single primordium metabolite profiling. These data demonstrate that a switch in the constellation of tricarboxylic acid (TCA) cycle metabolites defines a narrow window towards the end of the P3 stage of leaf development. Taken in the context of other data in the literature, our results substantiate that this phase of rice leaf growth, equivalent to a change of primordium length from around 5 to 7.5 mm, defines a major shift in rice leaf determination towards a photosynthetically defined structure. We speculate that efforts to engineer rice leaf structure should focus on the developmental window prior to these determining events.

2019 ◽  
Vol 71 (8) ◽  
pp. 2365-2378 ◽  
Author(s):  
Jasmien Vercruysse ◽  
Alexandra Baekelandt ◽  
Nathalie Gonzalez ◽  
Dirk Inzé

Abstract Leaves are the primary organs for photosynthesis, and as such have a pivotal role for plant growth and development. Leaf development is a multifactorial and dynamic process involving many genes that regulate size, shape, and differentiation. The processes that mainly drive leaf development are cell proliferation and cell expansion, and numerous genes have been identified that, when ectopically expressed or down-regulated, increase cell number and/or cell size during leaf growth. Many of the genes regulating cell proliferation are functionally interconnected and can be grouped into regulatory modules. Here, we review our current understanding of six important gene regulatory modules affecting cell proliferation during Arabidopsis leaf growth: ubiquitin receptor DA1–ENHANCER OF DA1 (EOD1), GROWTH REGULATING FACTOR (GRF)–GRF-INTERACTING FACTOR (GIF), SWITCH/SUCROSE NON-FERMENTING (SWI/SNF), gibberellin (GA)–DELLA, KLU, and PEAPOD (PPD). Furthermore, we discuss how post-mitotic cell expansion and these six modules regulating cell proliferation make up the final leaf size.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 315
Author(s):  
Hailin Liu ◽  
Xin Han ◽  
Jue Ruan ◽  
Lian Xu ◽  
Bing He

The final size of plant leaves is strictly controlled by environmental and genetic factors, which coordinate cell expansion and cell cycle activity in space and time; however, the regulatory mechanisms of leaf growth are still poorly understood. Ginkgo biloba is a dioecious species native to China with medicinally and phylogenetically important characteristics, and its fan-shaped leaves are unique in gymnosperms, while the mechanism of G. biloba leaf development remains unclear. In this study we studied the transcriptome of G. biloba leaves at three developmental stages using high-throughput RNA-seq technology. Approximately 4167 differentially expressed genes (DEGs) were obtained, and a total of 12,137 genes were structure optimized together with 732 new genes identified. More than 50 growth-related factors and gene modules were identified based on DEG and Weighted Gene Co-expression Network Analysis. These results could remarkably expand the existing transcriptome resources of G. biloba, and provide references for subsequent analysis of ginkgo leaf development.


2009 ◽  
Vol 151 (4) ◽  
pp. 1844-1854 ◽  
Author(s):  
Jennifer Sloan ◽  
Andreas Backhaus ◽  
Robert Malinowski ◽  
Simon McQueen-Mason ◽  
Andrew J. Fleming
Keyword(s):  

2020 ◽  
Vol 69 (11) ◽  
pp. 2357-2369
Author(s):  
Naoki Umemura ◽  
Masahiro Sugimoto ◽  
Yusuke Kitoh ◽  
Masanao Saio ◽  
Hiroshi Sakagami

Abstract Myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) are both key immunosuppressive cells that contribute to tumor growth. Metabolism and immunity of tumors depend on the tumor microenvironment (TME). However, the intracellular metabolism of MDSCs and TAMs during tumor growth remains unclear. Here, we characterized CD11b+ cells isolated from a tumor-bearing mouse model to compare intratumoral TAMs and intrasplenic MDSCs. Intratumoral CD11b+ cells and intrasplenic CD11b+ cells were isolated from tumor-bearing mice at early and late stages (14 and 28 days post-cell transplantation, respectively). The cell number of intrasplenic CD11b+ significantly increased with tumor growth. These cells included neutrophils holding segmented leukocytes or monocytes with an oval nucleus and Gr-1hi IL-4Rαhi cells without immunosuppressive function against CD8 T cells. Thus, these cells were classified as MDSC-like cells (MDSC-LCs). Intratumoral CD11b+ cells included macrophages with a round nucleus and were F4/80hi Gr-1lo IL-4Rαhi cells. Early stage intratumoral CD11b+ cells inhibited CD8 T cells via TNFα. Thus, this cell population was classified as TAMs. Metabolomic analyses of intratumoral TAMs and MDSC-LCs during tumor growth were conducted. Metabolic profiles of intratumoral TAMs showed larger changes in various metabolic pathways, e.g., glycolysis, TCA cycle, and glutamic acid pathways, during tumor growth compared with MDSL-LCs. Our findings demonstrated that intratumoral TAMs showed an immunosuppressive capacity from the early tumor stage and underwent intracellular metabolism changes during tumor growth. These results clarify the intracellular metabolism of TAMs during tumor growth and contribute to our understanding of tumor immunity.


2007 ◽  
Vol 292 (6) ◽  
pp. F1858-F1866 ◽  
Author(s):  
Miguel L. Graciano ◽  
Cynthia R. Mouton ◽  
Matthew E. Patterson ◽  
Dale M. Seth ◽  
John J. Mullins ◽  
...  

Transgenic rats with inducible ANG II-dependent malignant hypertension [TGR(Cyp1a1Ren2)] were generated by inserting the mouse Ren2 renin gene into the genome of the rat. The present study was performed to assess renal morphological changes occurring during the development of ANG II-dependent malignant hypertension in these rats. Male Cyp1a1-Ren2 rats ( n = 10) were fed normal rat food containing indole-3-carbinol (I3C; 0.3%) for 10 days to induce malignant hypertension. Rats induced with I3C had higher mean arterial pressures (173 ± 9 vs. 112 ± 11 mmHg, P < 0.01) than noninduced normotensive rats ( n = 9). Glomerular damage was evaluated by determination of the glomerulosclerosis index (GSI) in tissue sections stained with periodic acid-Schiff. Kidneys of hypertensive rats had a higher GSI than normotensive rats (21.3 ± 5.6 vs. 3.5 ± 1.31 units). Quantitative analysis of macrophage ED-1-positive cells and proliferating cell nuclear antigen using immunohistochemistry demonstrated increased macrophage numbers in the renal interstitium (106.4 ± 11.4 vs. 58.7 ± 5.0 cells/mm2) and increased proliferating cell number in cortical tubules (37.8 ± 5.7 vs. 24.2 ± 2.1 cells/mm2), renal cortical vessels (2.2 ± 0.5 vs. 0.13 ± 0.07 cells/vessel), and the cortical interstitium (33.6 ± 5.7 vs. 4.2 ± 1.4 cells/mm2) of hypertensive rat kidneys. These findings demonstrate that the renal pathological changes that occur during the development of malignant hypertension in Cyp1a1-Ren2 rats are characterized by inflammation and cellular proliferation in cortical vessels and tubulointerstitium.


2020 ◽  
Vol 71 (11) ◽  
pp. 3314-3322 ◽  
Author(s):  
Erwann Arc ◽  
Martina Pichrtová ◽  
Ilse Kranner ◽  
Andreas Holzinger

Abstract In streptophytic green algae in the genus Zygnema, pre-akinete formation is considered a key survival strategy under extreme environmental conditions in alpine and polar regions. The transition from young, dividing cells to pre-akinetes is associated with morphological changes and the accumulation of storage products. Understanding the underlying metabolic changes could provide insights into survival strategies in polar habitats. Here, GC-MS-based metabolite profiling was used to study the metabolic signature associated with pre-akinete formation in Zygnema sp. from polar regions under laboratory conditions, induced by water and nutrient depletion, or collected in the field. Light microscopy and TEM revealed drastic changes in chloroplast morphology and ultrastructure, degradation of starch grains, and accumulation of lipid bodies in pre-akinetes. Accordingly, the metabolite profiles upon pre-akinete formation reflected a gradual shift in metabolic activity. Compared with young cells, pre-akinetes showed an overall reduction in primary metabolites such as amino acids and intermediates of the tricarboxylic acid (TCA) cycle, consistent with a lower metabolic turnover, while they accumulated lipids and oligosaccharides. Overall, the transition to the pre-akinete stage involves re-allocation of photosynthetically fixed energy into storage instead of growth, supporting survival of extreme environmental conditions.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Thomas Venables ◽  
Ann V. Griffith ◽  
Alice DeAraujo ◽  
Howard T. Petrie

Abstract T lymphocytes must be produced throughout life, yet the thymus, where T lymphocytes are made, exhibits accelerated atrophy with age. Even in advanced atrophy, however, the thymus remains plastic, and can be regenerated by appropriate stimuli. Logically, thymic atrophy is thought to reflect senescent cell death, while regeneration requires proliferation of stem or progenitor cells, although evidence is scarce. Here we use conditional reporters to show that accelerated thymic atrophy reflects contraction of complex cell projections unique to cortical epithelial cells, while regeneration requires their regrowth. Both atrophy and regeneration are independent of changes in epithelial cell number, suggesting that the size of the thymus is regulated primarily by rate-limiting morphological changes in cortical stroma, rather than by their cell death or proliferation. Our data also suggest that cortical epithelial morphology is under the control of medullary stromal signals, revealing a previously unrecognized endocrine-paracrine signaling axis in the thymus.


Biologia ◽  
2010 ◽  
Vol 65 (5) ◽  
Author(s):  
Renata Bączek-Kwinta ◽  
Agnieszka Adamska ◽  
Katarzyna Seidler-Łożykowska ◽  
Krzysztof Tokarz

AbstractThe response of the wild type (WT) and a strain C6/2 of German chamomile to 7-d soil drought and subsequent 7-day rehydration was studied. Shoot and leaf growth, vegetative development, water and protein contents, ascorbate peroxidase activity and gas exchange were compared. At the stress stage, water content of WT plants was slightly influenced and the effect was ceased after rehydration. Also the decrease in gas exchange was temporary. New leaves were formed, although their area was diminished. On the contrary, leaves of C6/2 plants were more desiccated and the durable decrease in water content was accompanied by the impairment in gas exchange also at the recovery stage (20–40% loss when compared to the control). At both stages of the experiment the growth of the long shoots of this genotype was drastically decreased, as well as leaf formation. Ascorbate peroxidase activity was increased by drought in leaves of both genotypes, but the pattern of changes in WT plants reflected the enhancement of metabolism resulting from proper water content and gas exchange at the recovery stage. Different pattern of changes in the protein content during drought was also noticed: a slight increase in WT, while the decrease by ¼ in C6/2 leaves. The response of WT plants to desiccation and rewatering was found to be more elastic than that of C6/2.


1986 ◽  
Vol 64 (11) ◽  
pp. 2645-2649 ◽  
Author(s):  
E. K. Merrill

Green ash (Fraxinus pennsylvanica var. subintegerrima) seedlings are heteroblastic; during development they produce two types of leaves, simple and compound. When grown under controlled conditions, the sequence of leaf types is predictable. Simple leaves are always at the first four nodes; compound leaves are always at node 8 and above. Nodes 5 through 7 have progressively fewer simple leaves and more compound leaves. Leaf growth on seedlings meets the preconditions of the plastochron index and leaf plastochron index. These indices, as well as the length of single expanding leaves, can be used to predict lengths of leaf primordia at nodes 4 and 8 so that early, simple and compound leaf development can be compared in further studies of green ash.


Sign in / Sign up

Export Citation Format

Share Document