oxidative phenotype
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 9)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Bruno Vecchiatto ◽  
Rafael C. da Silva ◽  
Talita S. Higa ◽  
Cynthia R. Muller ◽  
Anna Laura V. Américo ◽  
...  

Abstract Background We investigate the effect of aerobic physical training (APT) on muscle morphofunctional markers and Angiotensin Converting Enzyme 2/Angiotensin 1-7/Mas receptor (ACE2/Ang 1-7/Mas) axis in an obesity-linked insulin resistance (IR) animal model induced by cafeteria diet (CAF). Methods Male C57BL/6J mice were assigned into groups CHOW-SED (chow diet, sedentary; n = 10), CHOW-TR (chow diet, trained; n = 10), CAF-SED (n = 10) and CAF-TR (n = 10). APT consisted in running sessions of 60 min at 60% of maximal speed, 5 days per week for 8 weeks. Results Trained groups had lower body weight and adiposity compared with sedentary groups. CAF-TR improved the glucose and insulin tolerance tests compared with CAF-SED group (AUC = 28.896 ± 1589 vs. 35.200 ± 1076 mg dL−1 120 min−1; kITT = 4.1 ± 0.27 vs. 2.5 ± 0.28% min−1, respectively). CHOW-TR and CAF-TR groups increased exercise tolerance, running intensity at which VO2 max was reached, the expression of p-AMPK, p-ACC and PGC1-α proteins compared with CHOW-SED and CAF-SED. Mithocondrial protein expression of Mfn1, Mfn2 and Drp1 did not change. Lipid deposition reduced in CAF-TR compared with CAF-SED group (3.71 vs. 5.53%/area), but fiber typing, glycogen content, ACE2 activity, Ang 1-7 concentration and Mas receptor expression did not change. Conclusions The APT prevents obesity-linked IR by modifying the skeletal muscle phenotype to one more oxidative independent of changes in the muscle ACE2/Ang 1-7/Mas axis.


2020 ◽  
Vol 21 (23) ◽  
pp. 9046
Author(s):  
Melha Benlebna ◽  
Laurence Balas ◽  
Laurence Pessemesse ◽  
Béatrice Bonafos ◽  
Gilles Fouret ◽  
...  

Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous lipids reported to have antidiabetic and anti-inflammatory effects. Since skeletal muscle is a major target for insulin, the aim of this study is to explore for the first time the influence of several FAHFAs in C2C12 myoblasts and in skeletal muscle phenotype in mice. Here, we show that eleven FAHFAs belonging to different families inhibit C2C12 myoblast proliferation. In addition, all FAHFAs decreased mitochondrial cytochrome c oxidase activity without affecting reactive oxygen species production and the mitochondrial network. During C2C12 myoblasts differentiation, we found that two of the most active lipids, 9-PAHPA and 9-OAHPA, did not significantly affect the fusion index and the expression of myosin heavy chains. However, we found that three months’ intake of 9-PAHPA or 9-OAHPA in mice increased the expression of more oxidative myosin in skeletal muscle without affecting skeletal muscle mass, number, and mean fiber area, mitochondrial activity, and oxidative stress parameters. In conclusion, our study indicated that the eleven FAHFAs tested decreased the proliferation rate of C2C12 myoblasts, probably through the inhibition of mitochondrial activity. In addition, we found that 9-PAHPA or 9-OAHPA supplementation in mice induced a switch toward a more oxidative contractile phenotype of skeletal muscle. These data suggest that the increase in insulin sensitivity previously described for these two FAHFAs is of muscular origin.


2020 ◽  
Vol 1 (7) ◽  
pp. 100122
Author(s):  
Jian Liu ◽  
Jesus Campagna ◽  
Varghese John ◽  
Robert Damoiseaux ◽  
Ekaterina Mokhonova ◽  
...  

2020 ◽  
Vol 21 (19) ◽  
pp. 7203
Author(s):  
Christelle Bertrand-Gaday ◽  
Martine Letheule ◽  
Emilie Blanchet ◽  
Barbara Vernus ◽  
Laurence Pessemesse ◽  
...  

Skeletal muscle has a remarkable plasticity, and its phenotype is strongly influenced by hormones, transcription factors, and physical activity. However, whether skeletal phenotype can be oriented or not during early embryonic stages has never been investigated. Here, we report that pyruvate as the only source of carbohydrate in the culture medium of mouse one cell stage embryo influenced the establishment of the muscular phenotype in adulthood. We found that pyruvate alone induced changes in the contractile phenotype of the skeletal muscle in a sexually dependent manner. For male mice, a switch to a more glycolytic phenotype was recorded, whereas, in females, the pyruvate induced a switch to a more oxidative phenotype. In addition, the influence of pyruvate on the contractile phenotypes was confirmed in two mouse models of muscle hypertrophy: the well-known myostatin deficient mouse (Mstn−/−) and a mouse carrying a specific deletion of p43, a mitochondrial triiodothyronine receptor. Finally, to understand the link between these adult phenotypes and the early embryonic period, we assessed the levels of two histone H3 post-translational modifications in presence of pyruvate alone just after the wave of chromatin reprogramming specific of the first cell cycle. We showed that H3K4 acetylation level was decreased in Mstn−/− 2-cell embryos, whereas no difference was found for H3K27 trimethylation level, whatever the genotype. These findings demonstrate for the first time that changes in the access of energy substrate during the very first embryonic stage can induce a precocious orientation of skeletal muscle phenotype in adulthood.


Author(s):  
Tomaz Mars ◽  
Katarina Mis ◽  
Marija Meznaric ◽  
Sonja Prpar Mihevc ◽  
Vid Jan ◽  
...  

Contraction-induced adaptations in skeletal muscles are well characterized in vivo, but the underlying cellular mechanisms are still not completely understood. Cultured human myotubes represent an essential model system for human skeletal muscle which can be modulated ex vivo, but they are quiescent and do not contract unless being stimulated. Stimulation can be achieved by innervation of human myotubes in vitro by co-culturing with embryonic rat spinal cord, or by replacing motor neuron activation by electrical pulse stimulation (EPS). Effects of these two in vitro approaches, innervation and EPS, were characterized with respects to the expression of myosin heavy chains (MyHCs) and metabolism of glucose and oleic acid in cultured human myotubes. Adherent human myotubes were either innervated with rat spinal-cord segments or exposed to EPS. The expression pattern of MyHCs was assessed by qPCR, immunoblotting, and immunofluorescence, while the metabolism of glucose and oleic acid were studied using radiolabeled substrates. Innervation and EPS promoted differentiation towards different fiber types in human myotubes. Expression of the slow MyHC-1 isoform was reduced in innervated myotubes, whereas it remained unaltered in EPS-treated cells. Expression of both fast isoforms (MyHC-2A and MyHC-2X) tended to decrease in EPS-treated cells. Both approaches induced a more oxidative phenotype, reflected in increased CO2 production from both glucose and oleic acid. Novelty: • Innervation and EPS favour differentiation into different fiber types in human myotubes. • Both innervation and EPS promote a metabolically more oxidative phenotype in human myotubes.


Author(s):  
Wessel F. Theeuwes ◽  
Nicholas A.M. Pansters ◽  
Harry R. Gosker ◽  
Annemie M.W.J. Schols ◽  
Koen J.P. Verhees ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1436 ◽  
Author(s):  
Alice Turdo ◽  
Gaetana Porcelli ◽  
Caterina D’Accardo ◽  
Simone Di Franco ◽  
Francesco Verona ◽  
...  

Although improvement in early diagnosis and treatment ameliorated life expectancy of cancer patients, metastatic disease still lacks effective therapeutic approaches. Resistance to anticancer therapies stems from the refractoriness of a subpopulation of cancer cells—termed cancer stem cells (CSCs)—which is endowed with tumor initiation and metastasis formation potential. CSCs are heterogeneous and diverge by phenotypic, functional and metabolic perspectives. Intrinsic as well as extrinsic stimuli dictated by the tumor microenvironment (TME)have critical roles in determining cell metabolic reprogramming from glycolytic toward an oxidative phenotype and vice versa, allowing cancer cells to thrive in adverse milieus. Crosstalk between cancer cells and the surrounding microenvironment occurs through the interchange of metabolites, miRNAs and exosomes that drive cancer cells metabolic adaptation. Herein, we identify the metabolic nodes of CSCs and discuss the latest advances in targeting metabolic demands of both CSCs and stromal cells with the scope of improving current therapies and preventing cancer progression.


2019 ◽  
Vol 400 (10) ◽  
pp. 1347-1358 ◽  
Author(s):  
Jelle Vriend ◽  
Charlotte A. Hoogstraten ◽  
Kevin R. Venrooij ◽  
Bartholomeus T. van den Berge ◽  
Larissa P. Govers ◽  
...  

Abstract Organic anion transporters (OATs) 1 and 3 are, besides being uptake transporters, key in several cellular metabolic pathways. The underlying mechanisms are largely unknown. Hence, we used human conditionally immortalized proximal tubule epithelial cells (ciPTEC) overexpressing OAT1 or OAT3 to gain insight into these mechanisms. In ciPTEC-OAT1 and -OAT3, extracellular lactate levels were decreased (by 77% and 71%, respectively), while intracellular ATP levels remained unchanged, suggesting a shift towards an oxidative phenotype upon OAT1 or OAT3 overexpression. This was confirmed by increased respiration of ciPTEC-OAT1 and -OAT3 (1.4-fold), a decreased sensitivity to respiratory inhibition, and characterized by a higher demand on mitochondrial oxidative capacity. In-depth profiling of tricarboxylic acid (TCA) cycle metabolites revealed reduced levels of intermediates converging into α-ketoglutarate in ciPTEC-OAT1 and -OAT3, which via 2-hydroxyglutarate metabolism explains the increased respiration. These interactions with TCA cycle metabolites were in agreement with metabolomic network modeling studies published earlier. Further studies using OAT or oxidative phosphorylation (OXPHOS) inhibitors confirmed our idea that OATs are responsible for increased use and synthesis of α-ketoglutarate. In conclusion, our results indicate an increased α-ketoglutarate efflux by OAT1 and OAT3, resulting in a metabolic shift towards an oxidative phenotype.


Toxins ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 431 ◽  
Author(s):  
Djurdja Jerotic ◽  
Marija Matic ◽  
Sonja Suvakov ◽  
Katarina Vucicevic ◽  
Tatjana Damjanovic ◽  
...  

The oxidative stress response via Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) interlinks inflammation- and metabolism-related pathways in chronic kidney disease. We assessed the association between polymorphisms in Nrf2, superoxide dismutase (SOD2), glutathione peroxidase (GPX1), and the risk of end-stage renal disease (ESRD). The modifying effect of these polymorphisms on both oxidative phenotype and ESRD prognosis, both independently and/or in combination with the glutathione S-transferase M1 (GSTM1) deletion polymorphism, was further analyzed. Polymorphisms in Nrf2 (rs6721961), SOD2 (rs4880), GPX1 (rs1050450), and GSTM1 were determined by PCR in 256 ESRD patients undergoing hemodialysis and 374 controls. Byproducts of oxidative stress were analyzed spectrophotometically or by ELISA. Time-to-event modeling was performed to evaluate overall survival and cardiovascular survival. The SOD2 Val/Val genotype increased ESRD risk (OR = 2.01, p = 0.002), which was even higher in combination with the GPX1 Leu/Leu genotype (OR = 3.27, p = 0.019). Polymorphism in SOD2 also showed an effect on oxidative phenotypes. Overall survival in ESRD patients was dependent on a combination of the Nrf2 (C/C) and GPX1 (Leu/Leu) genotypes in addition to a patients’ age and GSTM1 polymorphism. Similarly, the GPX1 (Leu/Leu) genotype contributed to longer cardiovascular survival. Conclusions: Our results show that SOD2, GPX1, and Nrf2 polymorphisms are associated with ESRD development and can predict survival.


Sign in / Sign up

Export Citation Format

Share Document