trim protein
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 10)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 8 ◽  
Author(s):  
Che-Yuan Hsu ◽  
Teruki Yanagi ◽  
Hideyuki Ujiie

Tripartite motif (TRIM) proteins play important roles in a wide range of cell physiological processes, such as signal transduction, transcriptional regulation, innate immunity, and programmed cell death. TRIM29 protein, encoded by the ATDC gene, belongs to the RING-less group of TRIM protein family members. It consists of four zinc finger motifs in a B-box domain and a coiled-coil domain, and makes use of the B-box domain as E3 ubiquitin ligase in place of the RING. TRIM29 was found to be involved in the formation of homodimers and heterodimers in relation to DNA binding; additional studies have also demonstrated its role in carcinogenesis, DNA damage signaling, and the suppression of radiosensitivity. Recently, we reported that TRIM29 interacts with keratins and FAM83H to regulate keratin distribution. Further, in cutaneous SCC, the expression of TRIM29 is silenced by DNA methylation, leading to the loss of TRIM29 and promotion of keratinocyte migration. This paper reviews the role of TRIM family proteins in malignant tumors, especially the role of TRIM29 in cutaneous SCC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fangxia Guan ◽  
Tuanjie Huang ◽  
Xinxin Wang ◽  
Qu Xing ◽  
Kristyn Gumpper ◽  
...  

Author(s):  
Zhou Shen ◽  
Lin Wei ◽  
Zhi-bo Yu ◽  
Zhi-yan Yao ◽  
Jing Cheng ◽  
...  

The Tripartite motif (TRIM) protein family, which contains over 80 members in human sapiens, is the largest subfamily of the RING-type E3 ubiquitin ligase family. It is implicated in regulating various cellular functions, including cell cycle process, autophagy, and immune response. The dysfunction of TRIMs may lead to numerous diseases, such as systemic lupus erythematosus (SLE). Lots of studies in recent years have demonstrated that many TRIM proteins exert antiviral roles. TRIM proteins could affect viral replication by regulating the signaling pathways of antiviral innate immune responses. Besides, TRIM proteins can directly target viral components, which can lead to the degradation or functional inhibition of viral protein through degradative or non-degradative mechanisms and consequently interrupt the viral lifecycle. However, new evidence suggests that some viruses may manipulate TRIM proteins for their replication. Here, we summarize the latest discoveries on the interactions between TRIM protein and virus, especially TRIM proteins’ role in the signaling pathway of antiviral innate immune response and the direct “game” between them.


2020 ◽  
Vol 117 (47) ◽  
pp. 29702-29711
Author(s):  
Stephen D. Carter ◽  
João I. Mamede ◽  
Thomas J. Hope ◽  
Grant J. Jensen

Members of the tripartite motif (TRIM) protein family have been shown to assemble into structures in both the nucleus and cytoplasm. One TRIM protein family member, TRIM5α, has been shown to form cytoplasmic bodies involved in restricting retroviruses such as HIV-1. Here we applied cryogenic correlated light and electron microscopy, combined with electron cryo-tomography, to intact mammalian cells expressing YFP-rhTRIM5α and found the presence of hexagonal nets whose arm lengths were similar to those of the hexagonal nets formed by purified TRIM5α in vitro. We also observed YFP-rhTRIM5α within a diversity of structures with characteristics expected for organelles involved in different stages of macroautophagy, including disorganized protein aggregations (sequestosomes), sequestosomes flanked by flat double-membraned vesicles (sequestosome:phagophore complexes), sequestosomes within double-membraned vesicles (autophagosomes), and sequestosomes within multivesicular autophagic vacuoles (amphisomes or autolysosomes). Vaults were also seen in these structures, consistent with their role in autophagy. Our data 1) support recent reports that TRIM5α can form both well-organized signaling complexes and nonsignaling aggregates, 2) offer images of the macroautophagy pathway in a near-native state, and 3) reveal that vaults arrive early in macroautophagy.


2020 ◽  
Vol 76 (10) ◽  
pp. 954-961 ◽  
Author(s):  
Jeremy R. Keown ◽  
Joy Yang ◽  
Moyra M. Black ◽  
David C. Goldstone

Members of the TRIM protein family have been shown to inhibit a range of viral infections. Recently, TRIM69 was identified as a potent inhibitor of Vesicular stomatitis Indiana virus infection, with its inhibition being dependent upon multimerization. Using SEC-MALLS analysis, it is demonstrated that the assembly of TRIM69 is mediated through the RING domain and not the Bbox domain as has been shown for other TRIM proteins. Using X-ray crystallography, the structure of the TRIM69 RING domain has been determined to a resolution of 2.1 Å, the oligomerization interface has been identified and regions outside the four-helix bundle have been observed to form interactions that are likely to support assembly.


2020 ◽  
Vol 88 (4) ◽  
Author(s):  
Xuan OuYang ◽  
Jie Guo ◽  
Qingyu Lv ◽  
Hua Jiang ◽  
Yuling Zheng ◽  
...  

ABSTRACT Streptococcus suis is an emerging zoonotic agent that causes streptococcal toxic shock-like syndrome (STSLS) and meningitis in humans, with high mortality and morbidity. The pathogenesis of both STSLS and central nervous system (CNS) infections caused by S. suis is not well understood. TRIM32, a member of the tripartite motif (TRIM) protein family, has been reported to regulate host inflammatory responses. In this study, we showed that TRIM32 deficiency significantly reduced the level of bacteremia and the production of proinflammatory cytokines following severe S. suis infection, protecting infected mice from STSLS. The influence of TRIM32 gene deletion on a range of processes known to be involved in S. suis meningitis was also examined. Both levels of bacterial loads and indications of brain hemorrhage were reduced in infected Trim32−/− mice compared with infected wild-type (WT) controls. We also found that TRIM32 deficiency increased the permeability of the blood-brain barrier (BBB) and the recruitment of inflammatory monocytes during the early course of S. suis infection, potentially limiting the development of S. suis meningitis. Our results suggest that TRIM32 sensitizes S. suis-induced infection via innate immune response regulation.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Liang Ma ◽  
Ninghua Yao ◽  
Ping Chen ◽  
Zhixiang Zhuang

Abstract Background Tripartite motif‑containing 27 (TRIM27) belongs to the TRIM protein family, which is closely related to the progression of some certain human cancers. Nevertheless, the biological function of TRIM27 in esophageal squamous cell carcinoma (ESCC) is still not clear. The aim of present research is to examine the function of TRIM27 in ESCC cells. Methods In the present study, RNA interference (RNAi) and lentiviral vector were used to knockdown and overexpression of TRIM27 in ESCC cells respectively. qRT-PCR and western blot were used to examine the expression of TRIM27 in ESCC cells. Cell counting kit-8 (CCK-8) assay was performed to determine the proliferation of cells. Results Our analyses indicated that TRIM27 was a pro-proliferation factor in ESCC cells. Moreover, overexpression of TRIM27 deeply suppressed the apoptosis of ESCC cells and accelerated its glucose uptake. In addition, an AKT inhibitor LY294002 was used to determine the connection between TRIM27 and AKT in ESCC cells. Our results demonstrated that TRIM27 has involved in the PI3/AKT signaling pathway. Moreover, TRIM27 interacted with PTEN and mediated its poly-ubiquitination in ESCC cells. Importantly, the glycolysis inhibitor 3-BrPA also inhibited the effect of TRIM27 on ESCC cells. Hence, TRIM27 also participated in the regulation of energy metabolism in ESCC cells. Conclusions This research not only gained a deep insight into the biological function of TRIM27 but also elucidated its potential target and signaling pathway in human ESCC cells.


2019 ◽  
Author(s):  
Stephen D Carter ◽  
Joao I Mamede ◽  
Thomas J. Hope ◽  
Grant J Jensen

Members of the TRIM protein family have been shown to gather into structures in both the nucleus and cytoplasm. One TRIM protein family member, TRIM5α, has been shown to form cytoplasmic bodies involved in restricting retroviruses such as HIV-1. Here we applied cryogenic correlated light and electron microscopy (cryo-CLEM) to intact mammalian cells expressing YFP-rhTRIM5α and found hexagonal nets were present whose arm-lengths were similar to those of the hexagonal nets formed by purified TRIM5α in-vitro. We also observed YFP-rhTRIM5α within a diversity of structures with characteristics expected for organelles involved in different stages of macroautophagy, including disorganized protein aggregations (sequestosomes), sequestosomes flanked by flat double-membraned vesicles (sequestosome:phagophore complexes), sequestosomes within a double-membraned vesicle (autophagosomes), and sequestosomes within multi-vesicular autophagic vacuoles (autolysosomes or amphisomes). Vaults were also seen in these structures, consistent with their role in autophagy. Our data (i) support recent reports that TRIM5α can form both well-organized signaling complexes and non-signaling aggregates, (ii) offer the first images of the macroautophagy pathway in a near-native state, and (iii) reveal that vaults arrive early in macroautophagy.


2019 ◽  
Vol 29 ◽  
pp. S138-S139
Author(s):  
H. Tajsharghi ◽  
M. Dahl-Halvarsson ◽  
M. Olive ◽  
M. Pokrzyw ◽  
K. Ejeskär ◽  
...  

2019 ◽  
Vol 87 (8) ◽  
pp. 706-710 ◽  
Author(s):  
Chunhua Liu ◽  
Zelin Shan ◽  
Jianqiao Diao ◽  
Wenyu Wen ◽  
Wenning Wang

Sign in / Sign up

Export Citation Format

Share Document