major taxon
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

2020 ◽  
Vol 66 (3-4) ◽  
pp. 231-238
Author(s):  
Gavin Stark ◽  
Rachel Schwarz ◽  
Shai Meiri

The majority of lizard clades are ancestrally and predominantly diurnal. The only major taxon in which most species are nocturnal is the Gekkota (geckos and pygopodids). As ectothermic thermoregulators, lizard metabolic rates are highly temperature dependent, and diurnal lizards therefore demonstrate higher metabolic rates than nocturnal ones. Furthermore, exposure to solar radiation is thought to reduce ectothermic longevity by increasing both metabolic costs and the rate of accumulating harmful mutations through UV radiation (UVC specifically). In being nocturnal, ectothermic species may reduce their intrinsic mortality rates and thus live longer. To test this hypothesis, we collected literature data on the maximum longevities of 740 lizard species, of which 185 are geckos. We examined whether geckos live longer than other lizards, and whether activity time affects gecko longevity. While geckos live relatively long for lizards of their size, their activity time was found to be unrelated to longevity, contradicting our predictions. We suggest that diurnal species may have evolved higher resistance to UV radiation via thicker, more keratinized skin. Elevated metabolic rates do not automatically equate with faster aging. Mortality through extrinsic causes (e.g., predation) may impose much stronger selective pressures than intrinsic causes.


2020 ◽  
Vol 131 (4) ◽  
pp. 737-755
Author(s):  
Rodolfo Otávio Santos ◽  
Michel Laurin ◽  
Hussam Zaher

Abstract Gymnophiona, popularly known as caecilians, the most poorly known major taxon of extant amphibians, are elongate and limbless tetrapods, with compact ossified skulls and reduced eyes, mainly adapted to fossorial life as adults. Caecilians are poorly represented in the fossil record, but despite the scarcity of fossil specimens described (only four named taxa, in addition to indeterminate fragmentary material), their fossils play a key role in our knowledge of the origin and evolution of Lissamphibia, as well as contribute directly to a better understanding of the phylogeny, taxonomy and biogeography of extant gymnophionan taxa. These records are scattered throughout geological time (from the Jurassic to the sub-Recent) and space (North and South America and Africa). Here, we revisit the caecilian fossil record, providing a brief description of all known extinct taxa described so far, along with general remarks about their impact on systematics, time range, and geographical distribution of the clade, as well as prospects for future research. Possible calibration constraints based on the caecilian fossil record are provided.


2018 ◽  
Author(s):  
Masanori Kohda ◽  
Takashi Hotta ◽  
Tomohiro Takeyama ◽  
Satoshi Awata ◽  
Hirokazu Tanaka ◽  
...  

AbstractThe ability to perceive and recognise a reflected mirror image as self (mirror self-recognition, MSR) is considered a hallmark of cognition across species. Although MSR has been reported in mammals and birds, it is not known to occur in any other major taxon. A factor potentially limiting the ability to test for MSR is that the established assay for MSR, the mark test, shows an interpretation bias towards animals with the dexterity (or limbs) required to touch a mark. Here, we show that the cleaner wrasse fish, Labroides dimidiatus, passes through all phases of the mark test: (i) social reactions towards the reflection, (ii) repeated idiosyncratic behaviours towards the mirror (contingency testing), and (iii) frequent observation of their reflection. When subsequently provided with a coloured tag, individuals attempt to remove the mark in the presence of a mirror but show no response towards transparent marks, or to coloured marks in the absence of a mirror. This remarkable finding presents a challenge to our interpretation of the mark test – do we accept that these behavioural responses in the mark test, which are taken as evidence of self-recognition in other species, mean that fish are self-aware? Or do we conclude that these behavioural patterns have a basis in a cognitive process other than self-recognition? If the former, what does this mean for our understanding of animal intelligence? If the latter, what does this mean for our application and interpretation of the mark test as a metric for animal cognitive abilities?


2016 ◽  
Author(s):  
Ellie E. Dyer ◽  
David W. Redding ◽  
Tim M. Blackburn

AbstractThe introduction of species to locations where they do not naturally occur (termed aliens) can have far-reaching and unpredictable environmental and economic consequences. Therefore there is a strong incentive to stem the tide of alien species introduction and spread. In order to identify broad patterns and processes of alien invasions, a spatially referenced, global dataset on the historical introductions and alien distributions of a complete taxonomic group is required.Here we present the Global Avian Invasions Atlas (GAVIA) – a new spatial and temporal dataset comprising 27,723 distribution records for 971 alien bird species introduced to 230 countries and administrative areas spanning the period 6000BCE – AD2014. GAVIA was initiated to provide a unified database of records on alien bird introductions, incorporating records from all stages of invasion, including introductions that have failed as well as those that have succeeded. GAVIA represents the most comprehensive resource on the global distribution of alien species in any major taxon, allowing the spatial and temporal dynamics of alien bird distributions to be examined.


2016 ◽  
Vol 10 (1) ◽  
pp. 20-35 ◽  
Author(s):  
Eva Oliveira ◽  
Carlos Barata ◽  
Benjamin Piña

The genome revolution has brought about a complete change on our view of biological systems. The quantitative determination of changes in all the major molecular components of the living cells, the "omics" approach, opened whole new fields for all health sciences, including toxicology. Endocrine disruption,i.e., the capacity of anthropogenic pollutants to alter the hormonal balance of the organisms, is one of the fields of Ecotoxicology in which omics has a relevant role. In the first place, the discovery of scores of potential targets in the genome of almost any Metazoan species studied so far, each of them being a putative candidate for interaction with endocrine disruptors. In addition, the understanding that ligands, receptors, and their physiological functions suffered fundamental variations during animal evolution makes it necessary to assess disruption effects separately for each major taxon. Fortunately, the same deal of knowledge on genes and genomes powered the development of new high-throughput techniques and holistic approaches. Genomics, transcriptomics, proteomics, metabolomics, and others, together with appropriate prediction and modeling tools, will mark the future of endocrine disruption assessment both for wildlife and humans.


Web Ecology ◽  
2012 ◽  
Vol 12 (1) ◽  
pp. 65-73 ◽  
Author(s):  
M. J. T. Assunção-Albuquerque ◽  
J. M. Rey Benayas ◽  
F. S. Albuquerque ◽  
M. Á. Rodríguez

Abstract. We identified high-value biodiversity areas (HVBAs) of terrestrial vertebrates according to a combined index of biodiversity (CBI) for each major taxon and a standardized biodiversity index (SBI) for all taxa in 2195 cells of 50 × 50 km in Western Europe to evaluate whether these areas are included in the current protected area networks. The World Database on Protected Areas (WDPA) and NATURA 2000 protected area network were used to assess the protected area cover in HVBAs. WDPA and NATURA 2000 were geographically quite complementary as WDPA is more densely represented in Central and Northern Europe and NATURA 2000 in the Mediterranean basin. A total of 729 cells were identified as HVBAs. From the total of these HVBA areas, NATURA 2000 network was present in more cells (660) than the WDPA network (584 cells). The sum of protected land percentages across all the HVBA cells was 28.8%. The identified HVBA cells according to the SBI included 603 or 78.2% of all vertebrate species in the study region, whereas the identified HVBA cells according to the SBI for individual taxa included 47 (90.4%) species of amphibians, 79 (74.5%) of reptiles, 417 (88.5%) of birds, and 130 (91.5%) of mammals. However, neither network was present in 7 or 3% of the identified HVBA cells. Thus, we recommend expanding protected areas in Europe to fill this gap and improve coverage of vertebrate species to strengthen biodiversity conservation.


2010 ◽  
Vol 24 (5) ◽  
pp. 407 ◽  
Author(s):  
Michelle T. Guzik ◽  
Andrew D. Austin ◽  
Steven J. B. Cooper ◽  
Mark S. Harvey ◽  
William F. Humphreys ◽  
...  

Australia was historically considered a poor prospect for subterranean fauna but, in reality, the continent holds a great variety of subterranean habitats, with associated faunas, found both in karst and non-karst environments. This paper critically examines the diversity of subterranean fauna in several key regions for the mostly arid western half of Australia. We aimed to document levels of species richness for major taxon groups and examine the degree of uniqueness of the fauna. We also wanted to compare the composition of these ecosystems, and their origins, with other regions of subterranean diversity world-wide. Using information on the number of ‘described’ and ‘known’ invertebrate species (recognised based on morphological and/or molecular data), we predict that the total subterranean fauna for the western half of the continent is 4140 species, of which ~10% is described and 9% is ‘known’ but not yet described. The stygofauna, water beetles, ostracods and copepods have the largest number of described species, while arachnids dominate the described troglofauna. Conversely, copepods, water beetles and isopods are the poorest known groups with less than 20% described species, while hexapods (comprising mostly Collembola, Coleoptera, Blattodea and Hemiptera) are the least known of the troglofauna. Compared with other regions of the world, we consider the Australian subterranean fauna to be unique in its diversity compared with the northern hemisphere for three key reasons: the range and diversity of subterranean habitats is both extensive and novel; direct faunal links to ancient Pangaea and Gondwana are evident, emphasising their early biogeographic history; and Miocene aridification, rather than Pleistocene post-ice age driven diversification events (as is predicted in the northern hemisphere), are likely to have dominated Australia’s subterranean speciation explosion. Finally, we predict that the geologically younger, although more poorly studied, eastern half of the Australian continent is unlikely to be as diverse as the western half, except for stygofauna in porous media. Furthermore, based on similar geology, palaeogeography and tectonic history to that seen in the western parts of Australia, southern Africa, parts of South America and India may also yield similar subterranean biodiversity to that described here.


2002 ◽  
Vol 8 ◽  
pp. 319-352 ◽  
Author(s):  
Richard K. Bambach

This paper presents new estimates of the genus diversity of predators in each major taxon containing predators, as well as an estimate of the total genus diversity of predators through the Phanerozoic. Predators have never been numerically abundant compared to prey. However, the diversity of predators and the proportion of total faunal diversity composed of predators have both increased over time, implying that ecosystems have increased their ability to support either more predators or more specialization among predators. Also, turnover in diversity dominance among predator groups, with more energetic predator taxa replacing or being added to a fauna of less energetic groups, implies that the energy available in marine food webs has increased. The apparent increase in diversity and biomass of primary producers plus patterns of diversity change in prey taxa supports these inferences based on patterns of change in predators alone.


Sign in / Sign up

Export Citation Format

Share Document