spontaneous oscillation
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 7)

H-INDEX

14
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 239
Author(s):  
Koutaro Onoda ◽  
Ben Nanzai

A spontaneous oscillation between the expansion and contraction of a nitrobenzene pendant droplet containing di-(2-ethylhexyl)phosphoric acid (DEHPA) was observed in an aqueous phase under alkaline conditions. We described this phenomenon as the spontaneous oscillation of the oil–water interfacial tension. The oscillation characteristics such as the induction period and the interfacial-tension oscillation frequency were investigated under different temperatures and aqueous phase polarities. The effects of the interfacial tension of the biphasic pendant-droplet, the surface excess of the surfactant molecules, and the amount of nitrobenzene elution from the droplet to the aqueous phase on the oscillation characteristics were investigated. Consequently, the periodic expansion–contraction oscillation mechanism was explained through the adsorption–desorption cycle of DEHPA with respect to the aggregate formation of the inverted micelle of DEHPA. This study was based on a simple vibration phenomenon of interfacial tension, and is extremely important for clarifying the predominant factors that cause fluctuations in the free interface energy, which has been ambiguous.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xianyu Cao ◽  
Huan Huang ◽  
Bei Zhang ◽  
Yuchao Jiang ◽  
Hui He ◽  
...  

Schizophrenia (SZ) is considered as a self-disorder with disordered local synchronous activation. Previous studies have reported widespread dyssynchrony of local activation in patients with SZ, which may be one of the crucial physiological mechanisms of SZ. To further verify this assumption, this work used a surface-based two-dimensional regional homogeneity (2dReHo) approach to compare the local neural synchronous spontaneous oscillation between patients with SZ and healthy controls (HC), instead of the volume-based regional homogeneity approach described in previous study. Ninety-seven SZ patients and 126 HC were recruited to this study, and we found the SZ showed abnormal 2dReHo across the cortical surface. Specifically, at the global level, the SZ patients showed significantly reduced global 2dReHo; at the vertex level, the foci with increased 2dReHo in SZ were located in the default mode network (DMN), frontoparietal network (FPN), and limbic network (LN); however, foci with decreased 2dReHo were located in the somatomotor network (SMN), auditory network (AN), and visual network (VN). Additionally, this work found positive correlations between the 2dReHo of bilateral rectus and illness duration, as well as a significant positive correlation between the 2dReHo of right orbital inferior frontal gyrus (OIFG) with the negative scores of the positive and negative syndrome scale in the SZ patients. Therefore, the 2dReHo could provide some effective features contributed to explore the pathophysiology mechanism of SZ.


2021 ◽  
Vol 31 (04) ◽  
pp. 2130011
Author(s):  
Ben Cao ◽  
Huaguang Gu ◽  
Jiawei Bai ◽  
Fuqiang Wu

Various spontaneous oscillations and Hopf bifurcation have been observed in hair bundles of auditory hair cells, which play very important roles in the auditory function. In the present paper, the bifurcations and chaos of spontaneous oscillations of hair bundles are investigated in a theoretical model to explain the experimental observations. Firstly, the equivalent negative stiffness and symmetrical characteristic of the model are acquired. The model exhibits coexisting attractors symmetrical to each other or an attractor with symmetry by itself. The attractors include stable focus, stable periodic oscillations, and chaotic oscillations. Secondly, except for the well-known subcritical and supercritical Hopf bifurcations from the stable focus to period-1 limit cycle, the complex bifurcations of spontaneous oscillation patterns such as period-doubling bifurcation cascade to chaos and intermittency between periodic limit cycles and chaos, are observed. Various chaotic oscillations are distinguished. Lastly, a complex bifurcation process containing multiple modes of oscillations and bifurcations mentioned above is obtained, which provides the relationships between different spontaneous oscillation patterns. The results present not only the well-known Hopf bifurcation, but also the various spontaneous oscillations including periodic and chaotic patterns, which are consistent with the recent experimental results. The complex bifurcation process presents a global view of the nonlinear dynamics of complex spontaneous oscillations of hair bundles, which is very important for the auditory function.


2020 ◽  
Vol 287 (1921) ◽  
pp. 20200115 ◽  
Author(s):  
Tzvetan Popov ◽  
Paul Szyszka

In 1929 Hans Berger discovered the alpha oscillations: prominent, ongoing oscillations around 10 Hz in the electroencephalogram of the human brain. These alpha oscillations are among the most widely studied brain signals, related to cognitive phenomena such as attention, memory and consciousness. However, the mechanisms by which alpha oscillations affect human cognition await demonstration. Here, we suggest the honey bee brain as an experimentally more accessible model system for investigating the functional role of alpha oscillations. We found a prominent spontaneous oscillation around 18 Hz that is reduced in amplitude upon olfactory stimulation. Similar to alpha oscillations in primates, the phase of this oscillation biased both timing of neuronal spikes and amplitude of high-frequency gamma activity (40–450 Hz). These results suggest a common role of alpha oscillations across phyla and provide an unprecedented new venue for causal studies on the relationship between neuronal spikes, brain oscillations and cognition.


2020 ◽  
Vol 123 (1) ◽  
pp. 300-307 ◽  
Author(s):  
Srihari Y. Sritharan ◽  
Enrique Contreras-Hernández ◽  
Andrew G. Richardson ◽  
Timothy H. Lucas

Recurrent thalamocortical circuits produce a number of rhythms critical to brain function. In slow-wave sleep, spindles (7–16 Hz) are a prominent spontaneous oscillation generated by thalamic circuits and triggered by cortical slow waves. In wakefulness and under anesthesia, brief peripheral sensory stimuli can evoke 10-Hz reverberations due potentially to similar thalamic mechanisms. Functionally, sleep spindles and peripherally evoked spindles may play a role in memory consolidation and perception, respectively. Yet, rarely have the circuits involved in these two rhythms been compared in the same animals and never in primates. Here, we investigated the entrainment of primary somatosensory cortex (S1) neurons to both rhythms in ketamine-sedated macaques. First, we compared spontaneous spindles in sedation and natural sleep to validate the model. Then, we quantified entrainment with spike-field coherence and phase-locking statistics. We found that S1 neurons entrained to spontaneous sleep spindles were also entrained to the evoked spindles, although entrainment strength and phase systematically differed. Our results indicate that the spindle oscillations triggered by top-down spontaneous cortical activity and bottom-up peripheral input share a common cortical substrate. NEW & NOTEWORTHY Brief sensory stimuli evoke 10-Hz oscillations in thalamocortical neuronal activity and in perceptual thresholds. The mechanisms underlying this evoked rhythm are not well understood but are thought to be similar to those generating sleep spindles. We directly compared the entrainment of cortical neurons to both spontaneous spindles and peripherally evoked oscillations in sedated monkeys. We found that the entrainment strengths to each rhythm were positively correlated, although with differing entrainment phases, implying involvement of similar networks.


2018 ◽  
Vol 507 (1-4) ◽  
pp. 211-216 ◽  
Author(s):  
Toshihiro Kuremoto ◽  
Haruka Kogiso ◽  
Makoto Yasuda ◽  
Taka-aki Inui ◽  
Kentaro Murakami ◽  
...  

2018 ◽  
Vol 138 (5) ◽  
pp. 685-692
Author(s):  
Kanako Taniguchi ◽  
Chieko Koike ◽  
Katsunori Kitano

Sign in / Sign up

Export Citation Format

Share Document