analogous system
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
pp. 152808372110256
Author(s):  
Tasnim N Shaikh ◽  
SB Chaudhari ◽  
BH Patel ◽  
Megha Patel

This work reports the engineering of textile electrodes, considered safe for humans even if worn next to skin for a longer time. Obliging this phenomenon conductive Silver nanoparticles (AgNPs) were biosynthesized from Silver Sulphate (Ag2SO4) and medicinal values enriched Ocimum Sanctum (Tulsi)leaves extract. These conductive Silver nanoparticles were loaded by spray technique on polypropylene nonwoven fabric having inbuilt antifungal characteristics, to reduce its resistivity (10Ω) for the fabrication of textile electrodes. The adequate skin-electrode impedance values were observed for the fabricated textile electrodes, viz; 1.44 MΩ–1.83 MΩ and 1.01 MΩ–1.18 MΩ, in the dry and wet state respectively. The 3-lead health monitoring electrocardiograms (ECG) were obtained on the Analogous system with the textile electrodes; dry and wet state as well as gel electrodes. The cardiograms were also taken at a smaller triangle than usual, only for the high resistance textile electrodes. The wet electrodes have executed considerably better clarity of PQR wavelets than reference gel electrodes ECG plots, and their performance was found consistent when tested after six months’ time leap. However, higher motion artifacts caused in the case of dry electrodes have resulted in distorted PQR wavelets and the tracing became worsen with increased testing time leap. This was mainly due to the encapsulation of conductive AgNPs in the air voids of the fabric, increased resistivity. The cardiogram quality has not shown peculiar benefit for a higher heart pumping pressure at the smaller triangle in either of the cases.



Author(s):  
Lemi Türker

Two isomeric methylxanthines, theobromine and theophilline, and their Zn+2 containing composites are considered within the restrictions of density functional theory (B3LYP/ 6-31++G(d,p)). Certain quantum chemical, thermodynamic and spectral data have been harvested, compared and interpreted. The results revealed that theophilline+Zn+2 system is thermodynamically more exothermic, more favorable and electronically stable compared to the analogous system, theobromine+Zn+2.



2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040017 ◽  
Author(s):  
Vladimir V. Kassandrov ◽  
Nina V. Markova

We consider the model of the self-gravity driven spontaneous wavefunction reduction proposed by L. Diosi, R. Penrose et al. and based on a self-consistent system of Schrödinger and Poisson equations. An analogous system of coupled Dirac and Maxwell-like equations is proposed as a relativization. Regular solutions to the latter form a discrete spectrum in which all the “active” gravitational masses are always positive, and approximately equal to inertial masses and to the mass [Formula: see text] of the quanta of Dirac field up to the corrections of order [Formula: see text]. Here [Formula: see text] is the gravitational analogue of the fine structure constant negligibly small for nucleons. In the limit [Formula: see text] the model reduces back to the nonrelativistic Schrödinger-Newton one. The equivalence principle is fulfilled with an extremely high precision. The above solutions correspond to various states of the same (free) particle rather than to different particles. These states possess a negligibly small difference in characteristics but essentially differ in the widths of the wavefunctions. For the ground state the latter is [Formula: see text] times larger the Compton length, so that a nucleon cannot be sufficiently localized to model the reduction process.



Author(s):  
L. A. Fullard ◽  
E. C. P. Breard ◽  
C. E. Davies ◽  
A. J. R. Godfrey ◽  
M. Fukuoka ◽  
...  

The dynamics of granular flow in a rectangular silo with two symmetrically placed exit openings is investigated using particle image velocimetry (PIV), flow rate measurements and discrete element modelling (DEM). The flow of mustard seeds in a Perspex silo is recorded using a high-speed camera and the resulting image frames are analysed using PIV to obtain velocity, velocity divergence and shear rate plots. A change in flow structure is observed as the distance L between the two openings is varied. The mass flow rate is shown to be at a maximum at zero opening separation, decreasing as L is increased; it then reaches a minimum before rising to an equilibrium rate close to two times that of an isolated (non-interacting) opening. The flow rate experiment is repeated using amaranth and screened sand and similar behaviour is observed. Although this result is in contrast with some recent DEM and physical experiments in silo systems, this effect has been reported in an analogous system: the evacuation of pedestrians from a room through two doors. Our experimental results are replicated using DEM and we show that inter-particle friction controls the flow rate behaviour and explains the discrepancies in the literature results.



Author(s):  
Tyler J. Gibson ◽  
Eric J. Barth

This paper presents the design and dynamic model for a novel prototype pneumatic boost converter, a device developed to be an energetic equivalent to the electrical boost converter. The design of the system selects pneumatic components that are energetically equivalent to the components used in the analogous system in the electrical domain. A dynamic model for the pneumatic boost converter that describes the rapidly fluctuating pressures and volumes is developed. Movement within the system and mass flow through orifices connecting control volumes are also modeled. A prototype was developed to reclaim air at 653 kPa (80 psig) and experimental pressure data were collected at the inlet and outlet of the system. These experimental data are used to validate the dynamic model by comparing experimental and simulated pressures. The experimental data are also used to calculate the total energy reclaimed by the pneumatic boost converter as well as the system efficiency.



2018 ◽  
Author(s):  
Nuno Faria Blanc ◽  
Jenny C. Mortimer ◽  
Paul Dupree

AbstractYeast have long been known to possess a cell wall integrity (CWI) system, and recently an analogous system has been described for the primary walls of plants (PCWI) that leads to changes in plant growth and cell wall composition. A similar system has been proposed to exist for secondary cell walls (SCWI). However, there is little data to support this. Here, we analysed the stem transcriptome of a set of cell wall biosynthetic mutants in order to investigate whether cell wall damage, in this case caused by aberrant xylan synthesis, activates a signalling cascade or changes in cell wall synthesis gene expression. Our data revealed remarkably few changes to the transcriptome. We hypothesise that this is because cells undergoing secondary cell wall thickening have entered a committed programme leading to cell death, and therefore a SCWI system would have limited impact. The absence of transcriptomic responses to secondary cell wall alterations may facilitate engineering of the secondary cell wall of plants.



2017 ◽  
Author(s):  
Ian R. Kleckner ◽  
Jiahe Zhang ◽  
Alexandra Touroutoglou ◽  
Lorena Chanes ◽  
Chenjie Xia ◽  
...  

Abstract:Large-scale intrinsic brain systems have been identified for exteroceptive senses (e.g., sight, hearing, touch). We introduce an analogous system for representing sensations from within the body, called interoception, and demonstrate its relation to regulating peripheral systems in the body, called allostasis. Employing the recently introduced Embodied Predictive Interoception Coding (EPIC) model, we used tract-tracing studies of macaque monkeys, followed by two intrinsic functional magnetic resonance imaging samples (N= 280 andN= 270) to evaluate the existence of an intrinsic allostatic/interoceptive system in the human brain. Another sample (N= 41) allowed us to evaluate the convergent validity of the hypothesized allostatic/interoceptive system by showing that individuals with stronger connectivity between system hubs performed better on an implicit index of interoceptive ability related to autonomic fluctuations. Implications include novel insights for the brain’s functional architecture, dissolving the artificial boundary between mind and body, and unifying mental and physical illness.



2015 ◽  
Vol 212 ◽  
pp. 46-52 ◽  
Author(s):  
M. Asadpour ◽  
S. Malakpour ◽  
M. Faghihnasiri ◽  
B. Taghipour


Sign in / Sign up

Export Citation Format

Share Document