ftsz gene
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 3)

H-INDEX

11
(FIVE YEARS 0)

2022 ◽  
Vol 23 (2) ◽  
pp. 853
Author(s):  
Yury Ilinsky ◽  
Mary Demenkova ◽  
Roman Bykov ◽  
Alexander Bugrov

Bacteria of the Wolbachia genus are maternally inherited symbionts of Nematoda and numerous Arthropoda hosts. There are approximately 20 lineages of Wolbachia, which are called supergroups, and they are designated alphabetically. Wolbachia strains of the supergroups A and B are predominant in arthropods, especially in insects, and supergroup F seems to rank third. Host taxa have been studied very unevenly for Wolbachia symbionts, and here, we turn to one of largely unexplored insect families: Acrididae. On the basis of five genes subject to multilocus sequence typing, we investigated the incidence and genetic diversity of Wolbachia in 41 species belonging three subfamilies (Gomphocerinae, Oedipodinae, and Podisminae) collected in Turkey, Kazakhstan, Tajikistan, Russia, and Japan, making 501 specimens in total. Our results revealed a high incidence and very narrow genetic diversity of Wolbachia. Although only the strains belonging to supergroups A and B are commonly present in present, the Acrididae hosts here proved to be infected with supergroups B and F without A-supergroup variants. The only trace of an A-supergroup lineage was noted in one case of an inter-supergroup recombinant haplotype, where the ftsZ gene came from supergroup A, and the others from supergroup B. Variation in the Wolbachia haplotypes in Acrididae hosts within supergroups B and F was extremely low. A comprehensive genetic analysis of Wolbachia diversity confirmed specific features of the Wolbachia allelic set in Acrididae hosts. This result can help to elucidate the crucial issue of Wolbachia biology: the route(s) and mechanism(s) of Wolbachia horizontal transmission.


2007 ◽  
Vol 409 (1) ◽  
pp. 87-94 ◽  
Author(s):  
El-Sayed El-Kafafi ◽  
Mohamed Karamoko ◽  
Isabelle Pignot-Paintrand ◽  
Didier Grunwald ◽  
Paul Mandaron ◽  
...  

FtsZ is a key protein involved in bacterial and organellar division. Bacteria have only one ftsZ gene, while chlorophytes (higher plants and green alga) have two distinct FtsZ gene families, named FtsZ1 and FtsZ2. This raises the question of why chloroplasts in these organisms need distinct FtsZ proteins to divide. In order to unravel new functions associated with FtsZ proteins, we have identified and characterized an Arabidopsis thaliana FtsZ1 loss-of-function mutant. ftsZ1-knockout mutants are impeded in chloroplast division, and division is restored when FtsZ1 is expressed at a low level. FtsZ1-overexpressing plants show a drastic inhibition of chloroplast division. Chloroplast morphology is altered in ftsZ1, with chloroplasts having abnormalities in the thylakoid membrane network. Overexpression of FtsZ1 also induced defects in thylakoid organization with an increased network of twisting thylakoids and larger grana. We show that FtsZ1, in addition to being present in the stroma, is tightly associated with the thylakoid fraction. This association is developmentally regulated since FtsZ1 is found in the thylakoid fraction of young developing plant leaves but not in mature and old plant leaves. Our results suggest that plastid division protein FtsZ1 may have a function during leaf development in thylakoid organization, thus highlighting new functions for green plastid FtsZ.


Microbiology ◽  
2005 ◽  
Vol 151 (12) ◽  
pp. 4015-4022 ◽  
Author(s):  
M. Casiraghi ◽  
S. R. Bordenstein ◽  
L. Baldo ◽  
N. Lo ◽  
T. Beninati ◽  
...  

Current phylogenies of the intracellular bacteria belonging to the genus Wolbachia identify six major clades (A–F), termed ‘supergroups’, but the branching order of these supergroups remains unresolved. Supergroups A, B and E include most of the wolbachiae found thus far in arthropods, while supergroups C and D include most of those found in filarial nematodes. Members of supergroup F have been found in arthropods (i.e. termites), and have previously been detected in the nematode Mansonella ozzardi, a causative agent of human filariasis. To resolve the phylogenetic positions of Wolbachia from Mansonella spp., and other novel strains from the flea Ctenocephalides felis and the filarial nematode Dipetalonema gracile, the authors generated new DNA sequences of the Wolbachia genes encoding citrate synthase (gltA), heat-shock protein 60 (groEL), and the cell division protein ftsZ. Phylogenetic analysis confirmed the designation of Wolbachia from Mansonella spp. as a member of the F supergroup. In addition, it was found that divergent lineages from Dip. gracile and Cte. felis lack any clear affiliation with known supergroups, indicating further genetic diversity within the Wolbachia genus. Finally, although the data generated did not permit clear resolution of the root of the global Wolbachia tree, the results suggest that the transfer of Wolbachia spp. from arthropods to nematodes (or vice versa) probably occurred more than once.


2005 ◽  
Vol 53 (2) ◽  
pp. 93-96 ◽  
Author(s):  
Mayuko Sato ◽  
Toshikazu Nishikawa ◽  
Tomokazu Yamazaki ◽  
Shigeyuki Kawano

Sign in / Sign up

Export Citation Format

Share Document