scholarly journals Mitotic Outcomes in Fibrous Environments

2021 ◽  
Author(s):  
Aniket Jana ◽  
Haonan Zhang ◽  
Ji Wang ◽  
Rakesh Kapania ◽  
Nir Gov ◽  
...  

During mitosis, cells round up and generate outward forces to create space and orient the mitotic spindles. Here, using suspended ECM-mimicking nanofiber networks, we recapitulate in vivo adhesion organization and confinement to interrogate mitotic outcomes for various interphase cell shapes. Elongated cells attached to single fibers through two focal adhesion clusters (FACs) at their extremities result in perfect spherical mitotic cell bodies that undergo large 3D displacement while being held by retraction fibers. Increasing the number of parallel fibers increases cellular extremity FACs and retraction fiber-driven stability, leading to reduced 3D cell-body movement, metaphase plate rotations, and significantly faster division times. Interestingly, interphase kite shapes on a crosshatch pattern of four fibers undergo mitosis resembling single-fiber outcomes due to rounded bodies being primarily held in position by retraction fibers from two perpendicular suspended fibers. We develop a cortex-astral microtubule analytical friction and force model to capture retraction-fiber-driven stability of the metaphase plate rotations. We report that reduced orientational stability results in increased monopolar mitotic defects. In the case of cells attached to two parallel fibers, rounded mitotic cells can get confined between the suspended fibers, allowing estimation of the mitotic forces through measurement of the outward deflection of the fibers. Interestingly, confinement causes rotated mitotic spindles similar to those reported in dense tissues. Overall, we establish dynamics of mitosis in fibrous environments governed by fiber arrangement and architecture-driven differences in interphase cell shapes, adhesion geometries, and varying levels of mechanical confinement.

Development ◽  
1986 ◽  
Vol 95 (1) ◽  
pp. 131-145
Author(s):  
Michelle Webb ◽  
Sarah K. Howlett ◽  
Bernard Maro

The cytoskeletal organization of the mouse egg changes during ageing in vivo and in vitro. The earliest change observed is the disappearance of the microfilament-rich area overlying the meiotic spindle. This is followed by the migration of the spindle towards the centre of the egg. Finally the spindle breaks down and the chromosomes are no longer organized on a metaphase plate. This spindle disruption may result from changes in the microtubule nucleating material found at the spindle poles and from an increase in the critical concentration for tubulin polymerization. It is possible to correlate the changes in the cytoskeletal organization of the egg occurring during ageing with the different types of parthenogenetic embryos obtained after ethanol activation. These observations strengthen the hypothesis that the actin-rich cortical area that overlies the meiotic spindle forms a domain to which the meiotic cleavage furrow is restricted and provides some insights into the mechanisms by which different types of parthenogenetic embryos are generated.


1971 ◽  
Vol 9 (3) ◽  
pp. 603-619
Author(s):  
W. D. COHEN ◽  
T. GOTTLIEB

Microtubules with incomplete cylindrical structure are present in isolated mitotic spindles of the sea urchin, Arbacia punctulata. In cross-section they appear C-shaped, and are thus similar to the ‘C-microtubules’ or ‘C-filaments’ observed previously in other systems. The C-microtubules are not uniformly distributed within isolated spindles, but are typically numerous in the interzonal region of anaphase spindles and in the metaphase chromosome ‘plate’. In chromosome-to-pole regions they are seen much less frequently, and microtubules with the usual O-configuration predominate. Counts of C- and O-microtubules in anaphase spindle cross-sections of known location show an inverse relationship between the number of C-microtubules present and the total number of microtubules present. The observations suggest that the C-microtubules are not simple artifacts of fixation or isolation, but rather may represent a stage of microtubule disassembly which occurs in the interzone during isolation or during anaphase in vivo. The alternate possibility of assembly is not excluded, however. The significance of C-microtubules is further discussed with respect to their occurrence in other systems, and to potential differences between mitotic microtubules.


2004 ◽  
Vol 24 (9) ◽  
pp. 3957-3971 ◽  
Author(s):  
Margret B. Einarson ◽  
Edna Cukierman ◽  
Duane A. Compton ◽  
Erica A. Golemis

ABSTRACT In a cross-species overexpression approach, we used the pseudohyphal transition of Saccharomyces cerevisiae as a model screening system to identify human genes that regulate cell morphology and the cell cycle. Human enhancer of invasion-cluster (HEI-C), encoding a novel evolutionarily conserved coiled-coil protein, was isolated in a screen for human genes that induce agar invasion in S. cerevisiae. In human cells, HEI-C is primarily localized to the spindle during mitosis. Depletion of HEI-C in vivo with short interfering RNAs results in severe mitotic defects. Analysis by immunofluorescence, flow cytometry analysis, and videomicroscopy indicates that HEI-C-depleted cells form metaphase plates with normal timing after G2/M transition, although in many cases cells have disorganized mitotic spindles. Subsequently, severe defects occur at the metaphase-anaphase transition, characterized by a significant delay at this stage or, more commonly, cellular disintegration accompanied by the display of classic biochemical markers of apoptosis. These mitotic defects occur in spite of the fact that HEI-C-depleted cells retain functional cell cycle checkpoints, as these cells arrest normally following nocodazole or hydroxyurea treatment. These results place HEI-C as a novel regulator of spindle function and integrity during the metaphase-anaphase transition.


2015 ◽  
Vol 46 (4) ◽  
pp. 587-598 ◽  
Author(s):  
E. Lewandowska ◽  
M. Charzyńska

About 90 per cent of <i>Tradescantia bracteata</i> pollen germinates <i>in vitro</i> after 15 min. Mitosis starts in the pollen tube after about 3 h. The mitotic trans-formations of chromosomes within the generative nucleus are not synchronized. They involve succesively the linearly arranged chromosomes in the elongated generative nucleus. In metaphase the chromosomes are arranged tandem-like linearly along the pollen tube. The chromatides translocate in anaphase from various distances to the poles in a plane parallel to the metaphase plate. This suggests that chromosomes have individual mitotic spindles and that coordination of the chromosome transformations in the generative cell is much less strict than in a typical somatic mitosis. Starch is the storage material of pollen grains. In the vegetative cytoplasm of mature pollen grains minute reddish-orange vesicular structures are visible after staining with neutral red. They do not fuse with the vacuoles proper arising in germinating pollen grains to form the vacuolar system of the pollen tube.


1993 ◽  
Vol 104 (4) ◽  
pp. 1175-1185 ◽  
Author(s):  
P. Buchenau ◽  
H. Saumweber ◽  
D.J. Arndt-Jovin

The regulation of DNA topology by topoisomerase II from Drosophila melanogaster has been studied extensively by biochemical methods but little is known about its roles in vivo. We have performed experiments on the inhibition of topoisomerase II in living Drosophila blastoderm embryos. We show that the enzymatic activity can be specifically disrupted by microinjection of antitopoisomerase II antibodies as well as the epipodophyllotoxin VM26, a known inhibitor of topoisomerase II in vitro. By labeling the chromatin of live embryos with tetramethylrhodamine-coupled histones, the effects of inhibition on nuclear morphology and behaviour was followed in vivo using confocal laser scanning microscopy. Both the antibodies and the drug prevented or hindered the segregation of chromatin daughter sets at the anaphase stage of mitosis. In addition, high concentrations of inhibitor interfered with the condensation of chromatin and its proper arrangement into the metaphase plate. The observed effects yielded non-functional nuclei, which were drawn into the inner yolk mass of the embryo. Concurrently, undamaged nuclei surrounding the affected region underwent compensatory division, leading to the restoration of the nuclear population, and thereby demonstrating the regulative capacity of Drosophila blastoderm embryos.


1999 ◽  
Vol 147 (2) ◽  
pp. 321-334 ◽  
Author(s):  
N.J. Quintyne ◽  
S.R. Gill ◽  
D.M. Eckley ◽  
C.L. Crego ◽  
D.A. Compton ◽  
...  

The multiprotein complex, dynactin, is an integral part of the cytoplasmic dynein motor and is required for dynein-based motility in vitro and in vivo. In living cells, perturbation of the dynein–dynactin interaction profoundly blocks mitotic spindle assembly, and inhibition or depletion of dynein or dynactin from meiotic or mitotic cell extracts prevents microtubules from focusing into spindles. In interphase cells, perturbation of the dynein–dynactin complex is correlated with an inhibition of ER-to-Golgi movement and reorganization of the Golgi apparatus and the endosome–lysosome system, but the effects on microtubule organization have not previously been defined. To explore this question, we overexpressed a variety of dynactin subunits in cultured fibroblasts. Subunits implicated in dynein binding have effects on both microtubule organization and centrosome integrity. Microtubules are reorganized into unfocused arrays. The pericentriolar components, γ tubulin and dynactin, are lost from centrosomes, but pericentrin localization persists. Microtubule nucleation from centrosomes proceeds relatively normally, but microtubules become disorganized soon thereafter. Overexpression of some, but not all, dynactin subunits also affects endomembrane localization. These data indicate that dynein and dynactin play important roles in microtubule organization at centrosomes in fibroblastic cells and provide new insights into dynactin–cargo interactions.


1993 ◽  
Vol 13 (5) ◽  
pp. 2899-2908 ◽  
Author(s):  
A L Jackson ◽  
P M Pahl ◽  
K Harrison ◽  
J Rosamond ◽  
R A Sclafani

Yeast Cdc7 protein kinase and Dbf4 protein are both required for the initiation of DNA replication at the G1/S phase boundary of the mitotic cell cycle. Cdc7 kinase function is stage-specific in the cell cycle, but total Cdc7 protein levels remained unchanged. Therefore, regulation of Cdc7 function appears to be the result of posttranslational modification. In this study, we have attempted to elucidate the mechanism responsible for achieving this specific execution point of Cdc7. Cdc7 kinase activity was shown to be maximal at the G1/S boundary by using either cultures synchronized with alpha factor or Cdc- mutants or with inhibitors of DNA synthesis or mitosis. Therefore, Cdc7 kinase is regulated by a posttranslational mechanism that ensures maximal Cdc7 activity at the G1/S boundary, which is consistent with Cdc7 function in the cell cycle. This cell cycle-dependent regulation could be the result of association with the Dbf4 protein. In this study, the Dbf4 protein was shown to be required for Cdc7 kinase activity in that Cdc7 kinase activity is thermolabile in vitro when extracts prepared from a temperature-sensitive dbf4 mutant grown under permissive conditions are used. In vitro reconstitution assays, in addition to employment of the two-hybrid system for protein-protein interactions, have demonstrated that the Cdc7 and Dbf4 proteins interact both in vitro and in vivo. A suppressor mutation, bob1-1, which can bypass deletion mutations in both cdc7 and dbf4 was isolated. However, the bob1-1 mutation cannot bypass all events in G1 phase because it fails to suppress temperature-sensitive cdc4 or cdc28 mutations. This indicates that the Cdc7 and Dbf4 proteins act at a common point in the cell cycle. Therefore, because of the common point of function for the two proteins and the fact that the Dbf4 protein is essential for Cdc7 function, we propose that Dbf4 may represent a cyclin-like molecule specific for the activation of Cdc7 kinase.


2018 ◽  
Vol 115 (19) ◽  
pp. E4377-E4385 ◽  
Author(s):  
Alyson S. Smith ◽  
Roberta B. Nowak ◽  
Sitong Zhou ◽  
Michael Giannetto ◽  
David S. Gokhin ◽  
...  

The biconcave disk shape and deformability of mammalian RBCs rely on the membrane skeleton, a viscoelastic network of short, membrane-associated actin filaments (F-actin) cross-linked by long, flexible spectrin tetramers. Nonmuscle myosin II (NMII) motors exert force on diverse F-actin networks to control cell shapes, but a function for NMII contractility in the 2D spectrin–F-actin network of RBCs has not been tested. Here, we show that RBCs contain membrane skeleton-associated NMIIA puncta, identified as bipolar filaments by superresolution fluorescence microscopy. MgATP disrupts NMIIA association with the membrane skeleton, consistent with NMIIA motor domains binding to membrane skeleton F-actin and contributing to membrane mechanical properties. In addition, the phosphorylation of the RBC NMIIA heavy and light chains in vivo indicates active regulation of NMIIA motor activity and filament assembly, while reduced heavy chain phosphorylation of membrane skeleton-associated NMIIA indicates assembly of stable filaments at the membrane. Treatment of RBCs with blebbistatin, an inhibitor of NMII motor activity, decreases the number of NMIIA filaments associated with the membrane and enhances local, nanoscale membrane oscillations, suggesting decreased membrane tension. Blebbistatin-treated RBCs also exhibit elongated shapes, loss of membrane curvature, and enhanced deformability, indicating a role for NMIIA contractility in promoting membrane stiffness and maintaining RBC biconcave disk cell shape. As structures similar to the RBC membrane skeleton exist in many metazoan cell types, these data demonstrate a general function for NMII in controlling specialized membrane morphology and mechanical properties through contractile interactions with short F-actin in spectrin–F-actin networks.


Author(s):  
Justin R. Garcia ◽  
Hai-Chao Han

Twisted veins are observed throughout the body and are often associated with health risks such as hypertension and diabetes mellitus [1]. Recently, it has been shown that veins will buckle and become tortuous when lumen pressure exceeds a critical value [2]. However, veins also undergo twist deformations in vivo due to body movement, vein grafting, and microanastomosis procedures which may lead to reduced patency, kinking, and thrombus formation [3, 4]. In spite of this, little data is available regarding the stability of veins when subject to twist deformations. Therefore, it is of clinical interest to investigate the mechanical stability of veins under torsion.


CYTOLOGIA ◽  
1969 ◽  
Vol 34 (3) ◽  
pp. 484-495 ◽  
Author(s):  
Bungo Wada
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document