scholarly journals Effect of Active and Passive Curvature on the Hydrodynamic Performance of Flapping Fins

Author(s):  
David Fernández-Gutiérrez ◽  
Wim M. van Rees

Abstract Ray-finned fish swim by flapping their fins, which are composed of bony rays connected by an inextensible membrane. Throughout the flapping cycle, the fins typically undergo both ‘passive’ deformation due to hydrodynamic loading, and ‘active’ deformation arising from internal musculature deforming the fin against the flow. To systematically analyze the impact of fin shape on hydrodynamic performance, a parametric definition of the fin geometry and its modes of deformation is required, consistent with the fin’s material and mechanical properties. In this paper we present a model and algorithm to determine the fin shape corresponding to an arbitrary out-of-plane curvature distribution for each ray. The shape is computed by iteratively enforcing constraints corresponding to membrane inextensibility, and negligible torsional stiffness of the rays. Based on this model, we present a low-order parametrization of fin shapes that capture the predominant deformation modes due to combined hydrodynamic loading and intrinsic actuation, as compared to experimental observations. To demonstrate the model’s ability to provide insight into the effect of curvature on hydrodynamic fin performance, we integrate our algorithm into a 3D Navier-Stokes solver Using this framework, we present initial results on the cycle-averaged thrust coefficient of a passively and actively deforming generalized trapezoidal caudal fin model at Reynolds number 1500 and Strouhal number 0.3. The results demonstrate that our model, algorithm, and integration with the flow solver form a useful framework to understand the effect of 3D curvature on hydrodynamic performance of flapping fins.

2019 ◽  
Vol 7 (2) ◽  
pp. 51 ◽  
Author(s):  
Wei Wang ◽  
Dagang Zhao ◽  
Chunyu Guo ◽  
Yongjie Pang

In this study, the Reynolds-averaged Navier–Stokes (RANS) method and a model experimental test in a towing tank are used to investigate the unsteady hydrodynamic performance of L-type podded propulsion under different oblique flow angles and advance coefficients. The results show that the load of the operative propeller increases with oblique flow angle and the bracket adds resistance to the pod due to the impact of water flow, leading to a reduced propeller thrust coefficient with increased oblique flow angle. Under a high advance coefficient, the speed of increase of the pressure effect is higher than that of the viscosity effect, and the propeller efficiency increases with the oblique flow angle. The nonuniformity of the inflow results in varying degrees of asymmetry in the horizontal and vertical distributions of the propeller blade pressure. Under high oblique flow angle, relatively strong interference effects are seen between venting vortexes and the cabin after blades, leading to a disorderly venting vortex system after the blade. The numerical simulation results are in good agreement with the experimental values. The study findings provide a foundation for further research on L-type podded propulsors.


2017 ◽  
Vol 51 (1) ◽  
pp. 40-51 ◽  
Author(s):  
Wang Lian-zhou ◽  
Guo Chun-yu ◽  
Wan Lei ◽  
Su Yu-min

AbstractThe interaction between the free surface and the propeller during heave motion near the free surface was analyzed numerically using the Reynolds-Averaged Navier-Stokes (RANS) method. The coupling effect between the rotation and heave motions of the propeller was modeled using a motion equation developed in this study; the heave motion was simplified as a periodic motion based on the sinusoidal motion law; and the transfer of numerical values for unsteady flow fields was implemented using overset grid technology. A comparative analysis of the unsteady thrust coefficient and torque coefficient under different advance coefficient conditions was conducted, and the air ingestion phenomenon of the propeller was analyzed. The research highlighted the interaction between the coupled heave and rotation motions of the propeller and the free surface. The results showed that, when the advance coefficient was low, the hydrodynamic performance of the propeller during heave motion near a free surface was strongly influenced by the free surface and that a remarkable interaction existed between the propeller and the free surface. As the advance coefficient increased, the interaction between the propeller and the free surface weakened. The air ingestion that the propeller exerts upon the free surface during heave motion is a complex coupled superposition process. This phenomenon is correlated to the motion state and working time of the propeller, as well as the distance between the propeller and the free surface.


Author(s):  
Mohammad Bakhtiari ◽  
Hassan Ghassemi

Marine cycloidal propeller, as a special type of marine propulsion system, is used for ships that require high maneuverability, such as tugs and ferries. In a marine cycloidal propeller, the thrust force is generated by rotation of a circular disk with a number of lifting blades fitted on the periphery of the disk, so that the propeller axis of rotation is perpendicular to the direction of thrust force. Each blade pitches about its own axis, and the thrust magnitude and direction can be adjusted by controlling the pitching angle of the blades. Therefore, the propulsion and maneuvering units are combined together and no separate rudder is needed to maneuver the ship. Two configurations of marine cycloidal propeller have been studied and developed based on propeller pitch: low-pitch propeller (designed for advance coefficient less than one, means λ < 1) and high-pitch propeller (designed for λ > 1). Low-pitch marine cycloidal propellers are used in applications with low-speed maneuvering requirements, such as tugboats and minesweepers. In this study, the effects of blade number on hydrodynamic performance of low-pitch marine cycloidal propeller with pure cycloidal motion of the blades are investigated. The turbulent flow around marine cycloidal propeller is solved using a 2.5D numerical method based on unsteady Reynolds-averaged Navier–Stokes equations with shear-stress transport k–ω turbulent model. The presented numerical method was validated against experimental data and showed good agreement. The results showed that the thrust coefficient of marine cycloidal propeller generally decreases by increasing the blade number, whereas the torque coefficient increases. Consequently, the hydrodynamic efficiency of marine cycloidal propeller drops as the blade number increases.


Author(s):  
Johannes Ruhland ◽  
Christian Breitsamter

AbstractThis study presents two-dimensional aerodynamic investigations of various high-lift configuration settings concerning the deflection angles of droop nose, spoiler and flap in the context of enhancing the high-lift performance by dynamic flap movement. The investigations highlight the impact of a periodically oscillating trailing edge flap on lift, drag and flow separation of the high-lift configuration by numerical simulations. The computations are conducted with regard to the variation of the parameters reduced frequency and the position of the rotational axis. The numerical flow simulations are conducted on a block-structured grid using Reynolds Averaged Navier Stokes simulations employing the shear stress transport $$k-\omega $$ k - ω turbulence model. The feature Dynamic Mesh Motion implements the motion of the oscillating flap. Regarding low-speed wind tunnel testing for a Reynolds number of $$0.5 \times 10^{6}$$ 0.5 × 10 6 the flap movement around a dropped hinge point, which is located outside the flap, offers benefits with regard to additional lift and delayed flow separation at the flap compared to a flap movement around a hinge point, which is located at 15 % of the flap chord length. Flow separation can be suppressed beyond the maximum static flap deflection angle. By means of an oscillating flap around the dropped hinge point, it is possible to reattach a separated flow at the flap and to keep it attached further on. For a Reynolds number of $$20 \times 10^6$$ 20 × 10 6 , reflecting full scale flight conditions, additional lift is generated for both rotational axis positions.


2021 ◽  
Vol 11 (11) ◽  
pp. 4934
Author(s):  
Viola Rossano ◽  
Giuliano De Stefano

Computational fluid dynamics was employed to predict the early stages of the aerodynamic breakup of a cylindrical water column, due to the impact of a traveling plane shock wave. The unsteady Reynolds-averaged Navier–Stokes approach was used to simulate the mean turbulent flow in a virtual shock tube device. The compressible flow governing equations were solved by means of a finite volume-based numerical method, where the volume of fluid technique was employed to track the air–water interface on the fixed numerical mesh. The present computational modeling approach for industrial gas dynamics applications was verified by making a comparison with reference experimental and numerical results for the same flow configuration. The engineering analysis of the shock–column interaction was performed in the shear-stripping regime, where an acceptably accurate prediction of the interface deformation was achieved. Both column flattening and sheet shearing at the column equator were correctly reproduced, along with the water body drift.


1991 ◽  
Vol 113 (1) ◽  
pp. 40-50 ◽  
Author(s):  
R. H. Tindell

The impact of computational fluid dynamics (CFD) methods on the development of advanced aerospace vehicles is growing stronger year by year. Design engineers are now becoming familiar with CFD tools and are developing productive methods and techniques for their applications. This paper presents and discusses applications of CFD methods used at Grumman to design and predict the performance of propulsion system elements such as inlets and nozzles. The paper demonstrates techniques for applying various CFD codes and shows several interesting and unique results. A novel application of a supersonic Euler analysis of an inlet approach flow field, to clarify a wind tunnel-to-flight data conflict, is presented. In another example, calculations and measurements of low-speed inlet performance at angle of attack are compared. This is highlighted by employing a simplistic and low-cost computational model. More complex inlet flow phenomena at high angles of attack, calculated using an approach that combines a panel method with a Navier-Stokes (N-S) code, is also reviewed. The inlet fluid mechanics picture is rounded out by describing an N-S calculation and a comparison with test data of an offset diffuser having massively separated flow on one wall. Finally, the propulsion integration picture is completed by a discussion of the results of nozzle-afterbody calculations, using both a complete aircraft simulation in a N-S code, and a more economical calculation using an equivalent body of revolution technique.


2021 ◽  
Author(s):  
Daniel de Oliveira Costa ◽  
Julia Araújo Perim ◽  
Bruno Guedes Camargo ◽  
Joel Sena Sales Junior ◽  
Antonio Carlos Fernandes ◽  
...  

Abstract Slamming events due to wave impact on the underside of decks might lead to severe and potentially harmful local and/or global loads in offshore structures. The strong nonlinearities during the impact require a robust method for accessing the loads and hinder the use of analytical models. The use of computation fluid dynamics (CFD) is an interesting alternative to estimate the impact loads, but validation through experimental data is still essential. The present work focuses on a flat-bottomed model fixed over the mean free surface level submitted to regular incoming waves. The proposal is to reproduce previous studies through CFD and model tests in a different reduced scale to provide extra validation and to identify possible non-potential scale effects such as air compressibility. Numerical simulations are performed in both experiments’ scales. The numerical analysis is performed with a marine dedicated flow solver, FINE™/Marine from NUMECA, which features an unsteady Reynolds-averaged Navier-Stokes (URANS) solver and a finite volume method to build spatial discretization. The multiphase flow is represented through the Volume of Fluid (VOF) method for incompressible and nonmiscible fluids. The new model tests were performed at the wave channel of the Laboratory of Waves and Currents (LOC/COPPE – UFRJ), at the Federal University of Rio de Janeiro.


2003 ◽  
Vol 127 (4) ◽  
pp. 649-658 ◽  
Author(s):  
Jochen Gier ◽  
Bertram Stubert ◽  
Bernard Brouillet ◽  
Laurent de Vito

Endwall losses significantly contribute to the overall losses in modern turbomachinery, especially when aerodynamic airfoil load and pressure ratios are increased. In turbines with shrouded airfoils a large portion of these losses are generated by the leakage flow across the shroud clearance. Generally the related losses can be grouped into losses of the leakage flow itself and losses caused by the interaction with the main flow in subsequent airfoil rows. In order to reduce the impact of the leakage flow and shroud design related losses a thorough understanding of the leakage losses and especially of the losses connected to enhancing secondary flows and other main flow interactions has to be understood. Therefore, a three stage LP turbine typical for jet engines is being investigated. For the three-stage test turbine 3D Navier-Stokes computations are performed simulating the turbine including the entire shroud cavity geometry in comparison with computations in the ideal flow path. Numerical results compare favorably against measurements carried out at the high altitude test facility at Stuttgart University. The differences of the simulations with and without shroud cavities are analyzed for several points of operation and a very detailed quantitative loss breakdown is presented.


2020 ◽  
Vol 10 (18) ◽  
pp. 6226
Author(s):  
Zhanfeng Qi ◽  
Lishuang Jia ◽  
Yufeng Qin ◽  
Jian Shi ◽  
Jingsheng Zhai

A numerical investigation of the propulsion performance and hydrodynamic characters of the full-active flapping foil under time-varying freestream is conducted. The finite volume method is used to calculate the unsteady Reynolds averaged Navier–Stokes by commercial Computational Fluid Dynamics (CFD) software Fluent. A mesh of two-dimensional (2D) NACA0012 foil with the Reynolds number Re = 42,000 is used in all simulations. We first investigate the propulsion performance of the flapping foil in the parameter space of reduced frequency and pitching amplitude at a uniform flow velocity. We define the time-varying freestream as a superposition of steady flow and sinusoidal pulsating flow. Then, we study the influence of time-varying flow velocity on the propulsion performance of flapping foil and note that the influence of the time-varying flow is time dependent. For one period, we find that the oscillating amplitude and the oscillating frequency coefficient of the time-varying flow have a significant influence on the propulsion performance of the flapping foil. The influence of the time-varying flow is related to the motion parameters (reduced frequency and pitching amplitude) of the flapping foil. The larger the motion parameters, the more significant the impact of propulsion performance of the flapping foil. For multiple periods, we note that the time-varying freestream has little effect on the propulsion performance of the full-active flapping foil at different pitching amplitudes and reduced frequency. In summary, we conclude that the time-varying incoming flow has little effect on the flapping propulsion performance for multiple periods. We can simplify the time-varying flow to a steady flow field to a certain extent for numerical simulation.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Filippo Rubechini ◽  
Michele Marconcini ◽  
Andrea Arnone ◽  
Massimiliano Maritano ◽  
Stefano Cecchi

In this work a numerical investigation of a four stage heavy-duty gas turbine is presented. Fully three-dimensional, multistage, Navier-Stokes analyses are carried out to predict the overall turbine performance. Coolant injections, cavity purge flows, and leakage flows are included in the turbine modeling by means of suitable wall boundary conditions. The main objective is the evaluation of the impact of gas modeling on the prediction of the stage and turbine performance parameters. To this end, four different gas models were used: three models are based on the perfect gas assumption with different values of constant cp, and the fourth is a real gas model which accounts for thermodynamic gas properties variations with temperature and mean fuel∕air ratio distribution in the through-flow direction. For the real gas computations, a numerical model is used which is based on the use of gas property tables, and exploits a local fitting of gas data to compute thermodynamic properties. Experimental measurements are available for comparison purposes in terms of static pressure values at the inlet∕outlet of each row and total temperature at the turbine exit.


Sign in / Sign up

Export Citation Format

Share Document