scholarly journals Probing the Use of Silane-Grafted Fumed Silica Nanoparticles to Produce Stable Transformer Oil-Based Nanofluids

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7649
Author(s):  
Muhammad I. Qureshi ◽  
Basit Qureshi

In this experimental investigation, hydrophobic silane-grafted fumed nano-silica was employed in transformer oil to formulate nanofluids (NFs). A cold-air atmosphere-pressure plasma reactor working on the principle of dielectric barrier discharge was designed and utilized to functionalize the surface of these nanoparticles. A field emission scanning electron microscope (FE-SEM) coupled with energy-dispersive X-ray (EDX) module and Fourier transform infrared (FTIR) spectroscopy were used to scan surface features of new and plasma-treated nanoparticles. The study revealed considerable changes in the surface chemistry of nanoparticles, which led to good dispersibility and stability of nanofluids. The measurements of AC breakdown voltages (AC-BDV) of nanofluids so prepared were conducted according to IEC-Std 60156, and a significant improvement in the dielectric strength was achieved. A statistical analysis of these results was performed using Weibull probabilistic law. At a 5% probability of failure, modified nanofluid remarkably exhibited a 60% increase in breakdown voltage. The dielectric properties such as variation of εr and tan δ in temperature of up to 70 °C were measured and compared with untreated fluid. Results exhibit an increase in tan δ and a slight decrease in permittivity of nanofluids. The analysis also revealed that while unpolar silane coating of NPs increased the breakdown strength, the polar-amino-silane-coated NPs in oil resulted in a drastic reduction. Details of this antagonistic trend are elaborated in this paper.

Vestnik IGEU ◽  
2020 ◽  
pp. 48-55
Author(s):  
O.S. Melnikova ◽  
V.S. Kuznetsov

The most damage-sensitive unit of power transformers is the main insulation of the oil barrier type. The breakdown of such insulation occurs as a result of the breakdown of the oil channel near the high voltage winding. In accordance with traditional methods of calculating the dielectric strength of insulation, the value of the breakdown strength is determined by empirical formulas depending on the selected width of the oil channel. The existing methods do not consider the influence of the oil channel volume, of the electric strength the statistical characteristics of the oil, the design features of the insulation of power transformers, and do not contain recommendations for creating design models. Thus, to improve the calculation accuracy, it is relevant to develop the evaluation method of dielectric strength of the main insulation of power transformers taking into account the volume and parameters of the breakdown voltage distribution of transformer oil, design features. The research results of the breakdown tension in oil channels with different volumes of transformer oil were used. To improve the accuracy of the calculation and taking into account the design features, the model of the main insulation of power transformers was made in the ANSYS program. Boundary data and assumption of linear stress distribution of transformer coils were considered. A method for calculating the dielectric strength of oil channels of the main insulation of power transformers, considering the volume and parameters of the breakdown voltage distribution of transformer oil was proposed. Unlike the existing methods, when calculating the minimum breakdown strength in the model of the main insulation, the design features of power transformers are taken into account and assumptions are justified to improve the accuracy of the calculation. In accordance with the methodology, the parameters of the dielectric strength of the transformer oil in the oil channel of the high voltage winding of the transformer were calculated. It was concluded that with increase of relative value of breakdown tension, dielectric strength of oil channel is decreasing, and it corresponds to physical sense of breakdown. The method for calculating the dielectric strength of transformer oil can be used when choosing the main insulation of power transformers in design.


Power and Distribution transformers are the key devices to maintain power system reliability. Thus in-order to have continuous power supply ,a fault tolerant system is to be developed by avoiding the failures on major devices like transformers. As insulation failure is accounted as 13.0% occurrence of all the faults on transformer, there is always a point of interest to enhance the breakdown strength of the transformer oil. Also to cater to the demand , an increase in the number and unit capacity of high voltage transformers require transformer oil with high oxidation stability and good electric properties. In this work , ceramic nanomaterials zirconia(ZrO2 ) and Ceria ( CeO2 ) are preferred due to their strong insulating property and high relative permittivity. The synthesized nanomaterials of concentration (0.5%wt) are dispersed into the transformer oil by sonication and AC breakdown measurements have been performed on the prepared nano transformer oil. The obtained results clearly indicates a remarkable increase in the dielectric strength of transformer oil filled with ZrO2 and CeO2nanoparticle


Vestnik IGEU ◽  
2020 ◽  
pp. 23-33
Author(s):  
O.S. Melnikova ◽  
M.V. Prusakov ◽  
A.A. Zholobov

The electrical strength of transformer oil is the first parameter in transformer insulation tests. Such tests are carried out in a standard discharger according to the values of breakdown voltage. An abrupt decrease in electrical strength occurs when oil is contaminated with mechanical impurities. The greatest influence on the electric field is exerted by highly conductive cellulose fibers. The field between the electrodes may be severely distorted bya «bridge» of such fibers. At the same time, the influence of such particles is not taken into account in the tests. The problem is to experimentally determine the effect of such impurities on the breakdown strength. Thereby, this research poses and solves the problem of determining the dielectric strength of transformer oil in a standard discharger in the presence of cellulose fibers.To simulate electric field strengths, the ANSYS software package has been used. The basis of the 3D model was a standard measuring cell for determining breakdown voltage, which takes into account the boundary conditions in the form of a cube in which the electrode system is located, and the values of the electric field strength in the center of the electrode system.The electric field tension between the electrodes has been calculated, taking into account the influence of increased conductivity of cellulose fibers. It has been found that the electrical strength of oil gaps of moistened fibers with a length of more than 200 μm is significantly reduced, which is not taken into account when testing transformer oil for breakdown in a standard cell. This leads to inaccuracy in determining the electric strength of transformer oil in existing equipment.The results of the study can be used by operational services to improve the assessment of the quality of transformer oil used in power transformers as insulation. The results also can be used to study the mechanisms of electrophysical processes occurring in liquid dielectrics in the presence of fibers.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3610
Author(s):  
Norhafezaidi Mat Saman ◽  
Izzah Hazirah Zakaria ◽  
Mohd Hafizi Ahmad ◽  
Zulkurnain Abdul-Malek

Mineral oil has been chosen as an insulating liquid in power transformers due to its superior characteristics, such as being an effective insulation medium and a great cooling agent. Meanwhile, the performance of mineral oil as an insulation liquid can be further enhanced by dispersing nanoparticles into the mineral oil, and this composition is called nanofluids. However, the incorporation of nanoparticles into the mineral oil conventionally causes the nanoparticles to agglomerate and settle as sediment in the base fluid, thereby limiting the improvement of the insulation properties. In addition, limited studies have been reported for the transformer oil as a base fluid using Aluminum Oxide (Al2O3) as nanoparticles. Hence, this paper reported an experimental study to investigate the significant role of cold plasma treatment in modifying and treating the surface of nano-alumina to obtain a better interaction between the nano-alumina and the base fluid, consequently improving the insulation characteristics such as breakdown voltage, partial discharge characteristics, thermal conductivity, and viscosity of the nanofluids. The plasma treatment process was conducted on the surface of nano-alumina under atmospheric pressure plasma by using the dielectric barrier discharge concept. The breakdown strength and partial discharge characteristics of the nanofluids were measured according to IEC 60156 and IEC 60270 standards, respectively. In contrast, the viscosity and thermal conductivity of the nanofluids were determined using Brookfield DV-II + Pro Automated viscometer and Decagon KD2-Pro conductivity meter, respectively. The results indicate that the 0.1 wt% of plasma-treated alumina nanofluids has shown the most comprehensive improvements in electrical properties, dispersion stability, and thermal properties. Therefore, the plasma treatment has improved the nanoparticles dispersion and stability in nanofluids by providing stronger interactions between the mineral oil and the nanoparticles.


2017 ◽  
Vol 11 (3) ◽  
pp. 386-392 ◽  
Author(s):  
Daosheng Liu ◽  
Boxue Du ◽  
Muqiu Yan ◽  
Shihui Wang ◽  
Xiping Liu

2012 ◽  
Vol 2012 (1) ◽  
pp. 000609-000616
Author(s):  
Beihai Ma ◽  
Manoj Narayanan ◽  
Shanshan Liu ◽  
Sheng Tong ◽  
U. (Balu) Balachandran

Ceramic film capacitors with high dielectric constant and high breakdown strength are promising for use in advanced power electronics, which would offer higher performance, improved reliability, and enhanced volumetric and gravimetric efficiencies. We have grown lead lanthanum zirconate titanate (PLZT) on nickel foils and platinized silicon (PtSi) substrates by chemical solution deposition. A buffer layer of LaNiO3 (LNO) was deposited on the nickel foils prior to the deposition of PLZT. We measured the following electrical properties for PLZT films grown on LNO buffered Ni and PtSi substrates, respectively: remanent polarization, ≈25.4 μC/cm2 and ≈10.1 μC/cm2; coercive electric field, ≈23.8 kV/cm and ≈27.9 kV/cm; dielectric constant at room temperature, ≈1300 and ≈1350; and dielectric loss at room temperature, ≈0.06 and ≈0.05. Weibull analysis determined the mean breakdown strength to be 2.6 MV/cm and 1.5 MV/cm for PLZT films grown on LNO buffered Ni and PtSi substrates, respectively. Residual stress analysis by x-ray diffraction revealed compressive stress of ≈-520 MPa in the ≈2-μm-thick PLZT grown on LNO buffered Ni foil, but a tensile stress of ≈210 MPa in the ≈2-μm-thick PLZT grown on PtSi substrates.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 176 ◽  
Author(s):  
Wei Dong ◽  
Xuan Wang ◽  
Bo Tian ◽  
Yuguang Liu ◽  
Zaixing Jiang ◽  
...  

Aromatic voltage stabilizers can improve the dielectric properties of cross-linked polyethylene (XLPE); however, their poor compatibility with XLPE hinders their practical application. Improving the compatibility of aromatic voltage stabilizers with XLPE has, therefore, become a new research goal. Herein 1-(4-vinyloxy)phenylethenone (VPE) was prepared and characterized. It can be grafted onto polyethylene molecules during the cross-linking processes to promote stability of the aromatic voltage stabilizers in XLPE. Fourier transform infrared spectroscopy confirmed that VPE was successfully grafted onto XLPE, and effectively inhibited thermal migration. Thermogravimetric analysis showed that the grafted VPE/XLPE composite exhibits a better thermal stability than a VPE/PE blend composite. Evaluation of the electrical properties showed that the breakdown strength and electrical tree initiation voltage of the VPE/XLPE composite were increased by 15.5% and 39.6%, respectively, when compared to those of bare XLPE. After thermal aging, the breakdown strength and electrical tree initiation voltage of the VPE/XLPE composite were increased by 9.4% and 25.8%, respectively, in comparison to those of bare XLPE, which indicates that the grafted voltage stabilizer can effectively inhibit its migration and enhance the stability of the composite material.


2020 ◽  
Vol 29 (1) ◽  
pp. 40-56 ◽  
Author(s):  
Arooj Rashid ◽  
Jawad Saleem ◽  
Muhammad Amin ◽  
Sahibzada Muhammad Ali

Multiple environmental stresses produce complex phenomena of aging in polymeric insulators. The main aim of this research is to investigate the improved aging characteristics of silica (SiO2)/alumina trihydrate (ATH) hybrid samples (HSs) in high-temperature vulcanized rubber. For this purpose, three HSs comprising 20% micro-ATH with 2% nano-SiO2 (S2), 4% nano-SiO2 (S4), 6% nano-SiO2 (S6) along with sample-virgin (SV) are subjected to long-term accelerated aging of 9000 h. A special aging chamber is fabricated for the aging process of samples. The aging characteristics of these samples are investigated by measuring leakage current (LC) and hydrophobicity classification (HC) after every weathering cycle. Similarly, Fourier transform infrared (FTIR) spectroscopy is performed to observe the important structural changes over the entire aging time. The dielectric strength of AC is also performed after every 1000 h of aging. Tracking and erosion resistance and mechanical properties are also investigated before and after aging. From the critical investigation, it is observed that HSs possess improved results in all the conducted tests. S2 has the lowest LC and HC values throughout the aging time. Similarly, S6 described the highest breakdown strength at the end of the accelerated aging. In the case of FTIR, it is analyzed that the important wave numbers remain intact for all the HSs in the accelerated aging environment. The loss percentage in the wave number for SV is higher, compared to the HSs. After performing the tracking and erosion resistance test, HSs have superior performance. For some of the mechanical properties, HSs showed improved values. Thus, from the experimental analysis, it is deducted that the sample S2 offers the highest resistance to the aging conditions, compared to the SV and other HSs.


2014 ◽  
Vol 908 ◽  
pp. 63-66
Author(s):  
Ya Jun Wang ◽  
Xiao Juan Wu ◽  
Chang Gen Feng

Polyimide (PI) was chosen as the matrix of the composite, barium titanate/polyimide (BT/PI) nanocomposite films were prepared by in situ polymerization. In order to improve the dispersion and the physical-chemical properties of BT surface, barium titanate was modified by Al2O3coating and modified BT/PI nanocomposite films were prepared. The prepared modified BT was characterized by X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM), and the dielectric properties of the composites were characterized in detail. It was shown that surface modification with Al2O3is the chemical process and there were new substances forming. When BT was modified by 10 wt% Al2O3, the dielectric constant of the composite film was 18.96 (103Hz), the loss tangent 0.005, breakdown strength 70 MV·m-1, energy storage density 0.41 J·cm-3. The dielectric constant of BT modified by Al2O3is decreased while the dielectric strength of the modified BT/PI composite film is increased.


Sign in / Sign up

Export Citation Format

Share Document