irradiation test
Recently Published Documents


TOTAL DOCUMENTS

305
(FIVE YEARS 30)

H-INDEX

16
(FIVE YEARS 2)

2022 ◽  
Vol 169 ◽  
pp. 108925
Author(s):  
Ch.S.S.S. Avinash ◽  
Kulbir Singh ◽  
E. Hemanth Rao ◽  
B. Malarvizhi ◽  
Sanjay Kumar Das ◽  
...  

Author(s):  
Akinori Sasaki ◽  
Hiroki Tanaka ◽  
Takushi Takata ◽  
Yuki Tamari ◽  
Tsubasa Watanabe ◽  
...  

Abstract The aim of this study is the development of an irradiation method for the treatment of superficial tumours using a hydrogel bolus to produce thermal neutrons in accelerator-based Boron Neutron Capture Therapy (BNCT). To evaluate the neutron moderating ability of a hydrogel bolus, a water phantom with a hydrogel bolus was irradiated with an epithermal neutron beam from a cyclotron-based epithermal neutron source. Phantom simulating irradiation to the plantar position was manufactured using three-dimensional printing technology to perform an irradiation test of a hydrogel bolus. Thermal neutron fluxes on the surface of a phantom were evaluated and the results were compared with the Monte Carlo-based Simulation Environment for Radiotherapy Applications (SERA) treatment planning software. It was confirmed that a hydrogel bolus had the same neutron moderating ability as water, and the calculation results from SERA aligned with the measured values within approximately 5%. Furthermore, it was confirmed that the thermal neutron flux decreased at the edge of the irradiation field. It was possible to uniformly irradiate thermal neutrons by increasing the bolus thickness at the edge of the irradiation field, thereby successfully determining uniform dose distribution. An irradiation method for superficial tumours using a hydrogel bolus in the accelerator-based BNCT was established.


2021 ◽  
Vol 61 (10) ◽  
pp. 106026
Author(s):  
S. Sato ◽  
A. Kasugai ◽  
K. Ochiai ◽  
K. Masuda ◽  
M.M. Nakamura ◽  
...  

2021 ◽  
pp. 089270572110319
Author(s):  
Mohamed Sahnoune ◽  
Mustapha Kaci ◽  
Hélène Garay ◽  
José-Marie Lopez-Cuesta ◽  
Mohamed Mahlous

The effect of gamma irradiation on neat Polyamide-11 (PA11) and PA11 filled with 3 wt% of halloysite nanotubes (HNTs) was investigated at various doses up to 100 kGy in air and at room temperature. The irradiation test was conducted on sample films prepared by a twin-screw extruder in the first step then cast extrusion. The study showed the formation of a maximum of gel fraction up to 10 and 20 kGy for neat PA11 and PA11/HNTs, respectively. Furthermore, the results indicated the occurrence of crosslinking at low irradiation dose, whereas chain scission took place at higher ones. Additionally, the results revealed that the presence of HNTs limits the impacts of gamma irradiation through a barrier effect. An optimum irradiation dose was found for thermal and mechanical properties, corresponding to the dose for maximum gel formation. Moreover, experimental design was implemented to highlight the main incidences and interactions of both halloysite incorporation and radiation dose on some relevant effects of gamma irradiation.


2021 ◽  
Vol 1971 (1) ◽  
pp. 012053
Author(s):  
Kun Zhang ◽  
Na Yan ◽  
Fan Yang ◽  
Xiaodong Zhao

2021 ◽  
Vol 11 (11) ◽  
pp. 5174
Author(s):  
Luís Guerra Rosa ◽  
José Carlos Garcia Pereira ◽  
Kaveh Rahmani ◽  
Guilherme De Almeida ◽  
Luís F. Santos

This work compares the performance of optical lenses made of silica glass or borosilicate glass (BK-7) when submitted to high-flux radiation emitted by a xenon arc lamp or provided by a high-concentration solar tower. Each irradiation test lasted for 60 min, with continuous monitoring of the radiation-flux incident on the lenses and the temperature generated in their vicinity. All silica glass lenses showed a good performance with both irradiation sources, xenon arc lamp and natural solar radiation, contrary to what was observed with the lenses made of borosilicate glass which fractured when irradiated with a xenon arc lamp. The negative behavior observed with the borosilicate lenses is attributed to the fact that the radiation spectrum of a xenon arc lamp contains certain wavelengths, in the near ultraviolet (UV) region, that are not present in the natural solar radiation spectrum at sea level.


2021 ◽  
Vol 5 (2) ◽  
pp. 15
Author(s):  
Mitsuru Imaizumi ◽  
Takeshi Ohshima ◽  
Yosuke Yuri ◽  
Kohtaku Suzuki ◽  
Yoshifumi Ito

We investigated the effects of irradiation beam conditions on the performance degradation of silicon and triple-junction solar cells for use in space. The fluence rates of electron and proton beams were varied. Degradation did not depend on the fluence rate of protons for both cells. A higher fluence rate of electrons caused greater degradation of the Si cell, but the dependence was due to the temperature increase during irradiation. Two beam-area expansion methods, defocusing and scanning, were examined for proton irradiation of various energies (50 keV–10 MeV). In comparing the output degradation from irradiation with defocused and scanned proton beams, no significant difference in degradation was found for any proton energy. We plan to reflect these findings into ISO standard of irradiation test method of space solar cells.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 452
Author(s):  
Mara Camaiti ◽  
Villiam Bortolotti ◽  
Yijian Cao ◽  
Alessandra Papacchini ◽  
Antonella Salvini ◽  
...  

The protection of stone cultural assets is related to the transformation of the surface characteristic from hydrophilic to hydrophobic/superhydrophobic through the application of a coating. The suitability of a coating depends not only on its capability to dramatically change the surface wettability, but also on other parameters such as the modification of kinetics of water absorption, the permanence of vapor diffusivity, the resistance of the coating to aging and the low volatile organic compound emissions during its application. In this work, an oligo(ethylensuccinamide) containing low molecular pendant perfluoropolyether segments (SC2-PFPE) and soluble in environmentally friendly solvents was tested as a protective agent for historic stone artifacts. Magnetic resonance imaging and relaxometry were employed to evaluate the effects of the surface wettability change, to follow the water diffusion inside the rock and to study the porous structure evolution after the application of SC2-PFPE. A sun-like irradiation test was used to investigate the photo-stability of the product. The results demonstrate that the highly photo-stable SC2-PFPE minimizes the surface wettability of the stone by modifying the water sorptivity without significantly affecting its porous structure and vapor diffusivity. The improved performance of SC2-PFPE in comparison to other traditional coatings makes it a potential candidate as an advanced coating for stone cultural heritage protection.


Author(s):  
Kojiro Ito ◽  
Yangchao Zhang ◽  
Hiroaki Itsuji ◽  
Takumi Uezono ◽  
Tadanobu Toba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document