scholarly journals Cyclodextrins Allow the Combination of Incompatible Vancomycin and Ceftazidime into an Ophthalmic Formulation for the Treatment of Bacterial Keratitis

2021 ◽  
Vol 22 (19) ◽  
pp. 10538
Author(s):  
Yassine Bouattour ◽  
Florent Neflot-Bissuel ◽  
Mounir Traïkia ◽  
Anne-Sophie Biesse-Martin ◽  
Robin Frederic ◽  
...  

Ceftazidime (CZ) and vancomycin (VA) are two antibiotics used to treat bacterial keratitis. Due to their physical incompatibility (formation of a precipitate), it is not currently possible to associate both molecules in a single container for ophthalmic administration. We firstly characterized the incompatibility then investigated if 2-hydroxypropyl-beta (HPβCD) and 2-hydroxypropyl-gamma cyclodextrins (HPγCD) could prevent this incompatibility. The impact of pH on the precipitation phenomena was investigated by analysing the supernatant solution of the mixture using high performance liquid chromatography. A characterization of the inclusion of CZ with HPγCD using 1H nuclear magnetic resonance (NMR), and VA with HPβCD using 1H-NMR and a solubility diagram was performed. A design of experiment was built to determine the optimal conditions to obtain a formulation that had the lowest turbidity and particle count. Our results showed that VA and CZ form an equimolar precipitate below pH 7.3. The best formulation obtained underwent an in-vitro evaluation of its antibacterial activity. The impact of HPCDs on incompatibility has been demonstrated through the inclusion of antibiotics and especially VA. The formulation has been shown to be able to inhibit the incompatibility for pH higher than 7.3 and to possess unaltered antibacterial activity.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Helal F. Hetta ◽  
Israa M. S. Al-Kadmy ◽  
Saba Saadoon Khazaal ◽  
Suhad Abbas ◽  
Ahmed Suhail ◽  
...  

AbstractWe aimed to isolate Acinetobacter baumannii (A. baumannii) from wound infections, determine their resistance and virulence profile, and assess the impact of Silver nanoparticles (AgNPs) on the bacterial growth, virulence and biofilm-related gene expression. AgNPs were synthesized and characterized using TEM, XRD and FTIR spectroscopy. A. baumannii (n = 200) were isolated and identified. Resistance pattern was determined and virulence genes (afa/draBC, cnf1, cnf2, csgA, cvaC, fimH, fyuA, ibeA, iutA, kpsMT II, PAI, papC, PapG II, III, sfa/focDE and traT) were screened using PCR. Biofilm formation was evaluated using Microtiter plate method. Then, the antimicrobial activity of AgNPs was evaluated by the well-diffusion method, growth kinetics and MIC determination. Inhibition of biofilm formation and the ability to disperse biofilms in exposure to AgNPs were evaluated. The effect of AgNPs on the expression of virulence and biofilm-related genes (bap, OmpA, abaI, csuA/B, A1S_2091, A1S_1510, A1S_0690, A1S_0114) were estimated using QRT-PCR. In vitro infection model for analyzing the antibacterial activity of AgNPs was done using a co-culture infection model of A. baumannii with human fibroblast skin cell line HFF-1 or Vero cell lines. A. baumannii had high level of resistance to antibiotics. Most of the isolates harbored the fimH, afa/draBC, cnf1, csgA and cnf2, and the majority of A. baumannii produced strong biofilms. AgNPs inhibited the growth of A. baumannii efficiently with MIC ranging from 4 to 25 µg/ml. A. baumannii showed a reduced growth rate in the presence of AgNPs. The inhibitory activity and the anti-biofilm activity of AgNPs were more pronounced against the weak biofilm producers. Moreover, AgNPs decreased the expression of kpsMII , afa/draBC,bap, OmpA, and csuA/B genes. The in vitro infection model revealed a significant antibacterial activity of AgNPs against extracellular and intracellular A. baumannii. AgNPs highly interrupted bacterial multiplication and biofilm formation. AgNPs downregulated the transcription level of important virulence and biofilm-related genes. Our findings provide an additional step towards understanding the mechanisms by which sliver nanoparticles interfere with the microbial spread and persistence.


2022 ◽  
Vol 12 ◽  
Author(s):  
Sarangapani Sreelatha ◽  
Nadimuthu Kumar ◽  
Tan Si Yin ◽  
Sarojam Rajani

The bacterium Xanthomonas campestris pv. campestris (Xcc) causes black rot disease in cruciferous crops, resulting in severe yield loss worldwide. The excessive use of chemical pesticides in agriculture to control diseases has raised significant concern about the impact on the environment and human health. Nanoparticles have recently gained significant attention in agriculture owing to their promising application in plant disease control, increasing soil fertility and nutrient availability. In the current study, we synthesized thymol-loaded chitosan nanoparticles (TCNPs) and assessed their antibacterial activity against Xcc. The synthesis of TCNPs was confirmed by using ultraviolet–visible spectroscopy. Fourier-transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy analysis revealed the functional groups, size, and shape of TCNPs, with sizes ranging from 54 to 250 nm, respectively. The antibacterial activity of TCNPs against Xcc was investigated in vitro by liquid broth, cell viability, and live dead staining assay, and all of them demonstrated the antibacterial activity of TCNPs. Furthermore, TCNPs were found to directly inhibit the growth of Xcc by suppressing the growth of biofilm formation and the production of exopolysaccharides and xanthomonadin. The ultrastructure studies revealed membrane damage in TCNP-treated Xcc cells, causing a release of intracellular contents. Headspace/gas chromatography (GC)–mass spectrometry (MS) analysis showed changes in the volatile profile of Xcc cells treated with TCNPs. Increased amounts of carbonyl components (mainly ketones) and production of new volatile metabolites were observed in Xcc cells incubated with TCNPs. Overall, this study reveals TCNPs as a promising antibacterial candidate against Xcc.


1999 ◽  
Vol 43 (4) ◽  
pp. 882-889 ◽  
Author(s):  
Philip D. Lister ◽  
Victoria M. Gardner ◽  
Christine C. Sanders

ABSTRACT Although previous studies have indicated that clavulanate may induce AmpC expression in isolates of Pseudomonas aeruginosa, the impact of this inducer activity on the antibacterial activity of ticarcillin at clinically relevant concentrations has not been investigated. Therefore, a study was designed to determine if the inducer activity of clavulanate was associated with in vitro antagonism of ticarcillin at pharmacokinetically relevant concentrations. By the disk approximation methodology, clavulanate induction of AmpC expression was observed with 8 of 10 clinical isolates of P. aeruginosa. Quantitative studies demonstrated a significant induction of AmpC when clavulanate-inducible strains were exposed to the peak concentrations of clavulanate achieved in human serum with the 3.2- and 3.1-g doses of ticarcillin-clavulanate. In studies with three clavulanate-inducible strains in an in vitro pharmacodynamic model, antagonism of the bactericidal effect of ticarcillin was observed in some tests with regimens simulating a 3.1-g dose of ticarcillin-clavulanate and in all tests with regimens simulating a 3.2-g dose of ticarcillin-clavulanate. No antagonism was observed in studies with two clavulanate-noninducible strains. In contrast to clavulanate, tazobactam failed to induce AmpC expression in any strains, and the pharmacodynamics of piperacillin-tazobactam were somewhat enhanced over those of piperacillin alone against all strains studied. Overall, the data collected from the pharmacodynamic model suggested that induction per se was not always associated with reduced killing but that a certain minimal level of induction by clavulanate was required before antagonism of the antibacterial activity of its companion drug occurred. Nevertheless, since clinically relevant concentrations of clavulanate can antagonize the bactericidal activity of ticarcillin, the combination of ticarcillin-clavulanate should be avoided when selecting an antipseudomonal β-lactam for the treatment of P. aeruginosa infections, particularly in immunocompromised patients. For piperacillin-tazobactam, induction is not an issue in the context of treating this pathogen.


2020 ◽  
Vol 154 (5) ◽  
pp. 627-634
Author(s):  
Nicola J Rutherford-Parker ◽  
Sean T Campbell ◽  
Jennifer M Colby ◽  
Zahra Shajani-Yi

Abstract Objectives Voxelotor was recently approved for use in the United States as a treatment for sickle cell disease (SCD) and has been shown to interfere with the quantitation of hemoglobin (Hb) S percentage. This study aimed to determine the effect of voxelotor on the quantitation of hemoglobin variant levels in patients with multiple SCD genotypes. Methods In vitro experiments were performed to assess the impact of voxelotor treatment on hemoglobin variant testing. Whole blood samples were incubated with voxelotor and then analyzed by routinely used quantitative and qualitative clinical laboratory methods (high-performance liquid chromatography [HPLC], capillary zone electrophoresis [CZE], and acid and alkaline electrophoresis). Results Voxelotor modified the α-globin chain of multiple hemoglobins, including HbA, HbS, HbC, HbD-Punjab, HbE, HbA2, and HbF. These voxelotor-hemoglobin complexes prevented accurate quantitation of multiple hemoglobin species, including HbS, by HPLC and CZE. Conclusions Technical limitations in quantifying HbS percentage may preclude the use of HPLC or CZE for monitoring patients treated with voxelotor. Furthermore, it is unclear whether HbS-voxelotor complexes are clinically equivalent to HbS. Consensus guidelines for reporting hemoglobin variant percentages for patients taking voxelotor are needed, as these values are necessary for determining the number of RBC units to exchange in acute situations.


Antioxidants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 478 ◽  
Author(s):  
Ana B. Cerezo ◽  
Giorgiana M. Cătunescu ◽  
Mercedes Martínez-Pais González ◽  
Ruth Hornedo-Ortega ◽  
Carmen R. Pop ◽  
...  

Anthocyanins are extensively studied for their health-related properties, including antibacterial activity against urinary tract infections (UTI). Among common fruits, blueberries, with their remarkable antioxidant capacity, are one of the richest sources. Anthocyanin-rich extracts were obtained from four varieties: Snowchaser, Star, Stella Blue and Cristina Blue, grown in the hot climate of Southern Spain. Their total anthocyanins contents (TAC) were determined spectrophotometrically, and the anthocyanin profile by ultra high performance liquid chromatography—tandem mass spectrometer (UHPLC-MS/MS). Their antioxidant activity was assessed by oxygen radical absorbance capacity (ORAC) assay, while antibacterial activity against strains isolated from UTI patients was assessed in vitro, helping to select the varieties with the highest bioactive potential. Star showed the highest TAC and antioxidant activity (1663 ± 159 mg of cyanidin-3-O-glucoside (cy-3-O-glu) equivalents/100 g fresh weight (FW), 6345 ± 601 μmol Trolox equivalents (TE)/100 g FW, respectively), followed by Cristina Blue, Stella Blue and Snowchaser. As far as we know, this is the first time that cyanidin-3-rutinoside has been identified in blueberries. The extracts inhibited all the tested strains, MICs ranging from 0.4 mg/mL (for Stella Blue extract against UTI P. aeruginosa) to 9.5 mg/mL (for all extracts against UTI K. pneumoniae ssp. pneumoniae). This is the first study that assessed in vitro the antibacterial activity of blueberries against Klebsiella pneumoniae, Providencia stuartii and Micrococcus spp. strains isolated from UTI.


Author(s):  
NAWAZ MOHAMMED KHAN ◽  
PAWAN KUMAR ◽  
HEMANTH SUDHEER KUMAR K ◽  
BHARATH RATHNA KUMAR P

Objective: The present study envisages a series of oxadiazole fluoroquinolone derivatives that were synthesized (D1–D12) with added derivatives such as phenyl, aminophenyl, amino hydroxyphenyl along with cyclopropyl, ethyl, piperazine, and imidazole. Methods: All of the newly produced molecules were characterized by infrared, 1H nuclear magnetic resonance, mass spectrometry, and elemental analysis technique and screened for docking stimulation to find out binding modes of synthesized derivatives with 3FV5, 5IMW, and 5ESE and evaluated for in vitro antimicrobial activity. Results: From this study, it was found that the compound D8 showed good antibacterial activity against Gram-positive (Staphylococcus aureus), compound D9 showed good antibacterial activity against Gram-negative (Escherichia coli), and compound D3 showed good antifungal activity against fungi (Saccharomyces cerevisiae) in comparison with standard drugs (Ciprofloxacin and fluconazole). The zone of inhibition and minimum inhibitory concentration studies was performed on synthesized compounds. Conclusion: The analogs of oxadiazole flouroquinolone are suggested to be potent inhibitors with sufficient scope for further exploration.


BioMedicine ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 11 ◽  
Author(s):  
Yuh-Tzy Lin ◽  
Wei-Shih Huang ◽  
Huei-Yann Tsai ◽  
Min-Min Lee ◽  
Yuh-Fung Chen

Background: Paeoniflorin (PF) possesses several effects such as analgesic, the anti-spasmodic effect on smooth muscle. It protects the cardiovascular system and reveals the neuroprotective effect on cerebral ischemia. Monoamine system has been identified to have complex regulatory effects in pain signaling. There are no reports regarding the impact of PF on monoamine levels in the rodent brain by microdialysis. In this study, the effects of PF on monoamines and their metabolites in the rodent brain using in vivo microdialysis and in vitro high performance liquid chromatography (HPLC) analysis. Methods: Male S.D. rats were anesthetized, fixed onto the stereotaxic instrument to identify the positions of corpus striatum and cerebral cortex. Drilled a hole in the skull of anesthetic rats and proceeded microdialysis, and gave PF (100 μg, i.c.v.). Collected the dialysate and the concentration of monoamines and their metabolites in dialysate and analyzed with HPLC-ECD. Male ICR mice were administered with PF (96 μg, i.c.v.) and with Ringer solution as a control. After 20 mins of administration, the mice were cut off the brain immediately and separated into eight regions according to the method of Glowinski. Added extraction solution to each region, homogenized and extracted for further procedure. The extract was centrifuged, sucked the transparent layer and centrifuged once more. The transparent layer was filtered with a 0.22 μm nylon filter and analyzed with HPLC-ECD (electrochemical detection). Results: PF increased the content of DOPAC and NE in the cortex, and increased the content of NE and decreased the content of 5-HT in the medulla of the homogenized mice brain tissue. By microdialysis, PF increased the content of DOPAC and 5-HIAA in anesthetic rat cortex and expanded the content of DOPAC, HVA, and 5-HIAA in anesthetic rat striatum. Conclusions: It reveals that PF could activate the release of monoamines and increase their metabolites in the rodent brain.


2014 ◽  
Vol 307 (10) ◽  
pp. H1419-H1429 ◽  
Author(s):  
Elaine K. Gregory ◽  
Antonio R. Webb ◽  
Janet M. Vercammen ◽  
Megan E. Flynn ◽  
Guillermo A. Ameer ◽  
...  

Oral all-trans retinoic acid (atRA) has been shown to reduce the formation of neointimal hyperplasia; however, the dose required was 30 times the chemotherapeutic dose, which already has reported side effects. As neointimal formation is a localized process, new approaches to localized delivery are required. This study assessed whether atRA within a citrate-based polyester, poly(1,8 octanediolcitrate) (POC), perivascular membrane would prevent neointimal hyperplasia following arterial injury. atRA-POC membranes were prepared and characterized for atRA release via high-performance liquid chromatography with mass spectrometry detection. Rat adventitial fibroblasts (AF) and vascular smooth muscle cells (VSMC) were exposed to various concentrations of atRA; proliferation, apoptosis, and necrosis were assessed in vitro. The rat carotid artery balloon injury model was used to evaluate the impact of the atRA-POC membranes on neointimal formation, cell proliferation, apoptosis, macrophage infiltration, and vascular cell adhesion molecule 1 (VCAM-1) expression in vivo. atRA-POC membranes released 12 μg of atRA over 2 wk, with 92% of the release occurring in the first week. At 24 h, atRA (200 μmol/l) inhibited [3H]-thymidine incorporation into AF and VSMC by 78% and 72%, respectively (* P = 0.001), with negligible apoptosis or necrosis. Histomorphometry analysis showed that atRA-POC membranes inhibited neointimal formation after balloon injury, with a 56%, 57%, and 50% decrease in the intimal area, intima-to-media area ratio, and percent stenosis, respectively ( P = 0.001). atRA-POC membranes had no appreciable effect on apoptosis or proliferation at 2 wk. Regarding biocompatibility, we found a 76% decrease in macrophage infiltration in the intima layer ( P < 0.003) in animals treated with atRA-POC membranes, with a coinciding 53% reduction in VCAM-1 staining ( P < 0.001). In conclusion, perivascular delivery of atRA inhibited neointimal formation and restenosis. These data suggest that atRA-POC membranes may be suitable as localized therapy to inhibit neointimal hyperplasia following open cardiovascular procedures.


2021 ◽  
Vol 2021 (2) ◽  
pp. 21-26
Author(s):  
G. L. Gumeniuk ◽  
◽  
V. I. Ignatieva ◽  
S. G. Opimakh

This year’s World Asthma Day has the theme “Uncovering Asthma Misconceptions”. This position calls for action and action to clarify common myths and misconceptions about asthma that prevent asthma sufferers from receiving optimal benefits from major success in treating the condition. According to GINA experts, the most common mistakes in the world about asthma are as follows: 1. Myth: asthma is a childhood disease; people “outgrow” it as they age. True: asthma can occur at any age. 2. Myth: Asthma is an infectious disease. Truth: asthma is not contagious disease. 3. Myth: People with asthma should not exercise. Truth: When asthma is well controlled, individuals with asthma can exercise and achieve high performance in sports. 4. Myth: asthma can only be controlled with high doses of steroids. Truth: Most often, asthma is controlled with low doses of inhaled steroids. To a large extent, these theses refer to one of the most important challenges of our time — the management of patients with bronchial asthma in the context of the COVID-19 pandemic. Patients with asthma have a lower susceptibility to COVID-19, a less severe course, and a lower risk of hospitalizations due to COVID-19. Allergic asthma or its eosinophilic phenotype, intake of inhaled corticosteroids (ICS) have a positive effect on the course of the COVID-19 disease, since in such patients the lower expression level of ACE 2 receptors in the upper and lower respiratory tract, which are input receptors for SARS-CoV-2 virus. ICS such as budesonide or ciclesonide are capable of inhibiting the replication of genomic SARS-CoV-2 RNA due to the influence of viral endonuclease NSP15 and TMPRSS2 (transmembrane serine protease 2), a protease involved in viral entry into the cell. Some ICS (including budesonide) reduce or block SARS-CoV-2 replication in vitro. Experts from international asthma groups note that in the face of the COVID-19 pandemic, asthma patients should continue to take basic therapy, including corticosteroids. And in current studies, ICS budesonide in COVID-19 patients reduces the risk of hospitalization or emergency care by 91 % and significantly improves clinical recovery. Key words: bronchial asthma, COVID-19, inhaled corticosteroids, World Asthma Day.


2019 ◽  
pp. 96-104
Author(s):  
N. Hrynchuk ◽  
N. Vrynchanu

The emergence and spread of antibiotic-resistant strains of microorganisms reduces the effectiveness of antibiotic therapy and requires finding solutions to problems, one of which is the study of antimicrobial properties in drugs of various pharmacological groups. The purpose of the work was to summarize the data on the antibacterial activity of thioridazine and its derivatives to determine the feasibility and prospects of creating new antibacterial drugs on their basis. The paper presents literature data on the effects of thioridazine on the causative agent of tuberculosis, antistaphylococcal activity, susceptibility of plasmodium and trypanosoma. The antibacterial activity of the drug was established within in vitro studies with the determination of MIC towards gram-positive and gram-negative microorganisms, ex vivo using macrophage lines, as well as within in vivo experiments on mice. It is established that the neuroleptic thioridazine is characterized by pronounced anti-tuberculosis activity, the mechanism of action is associated with the impact on the cell membrane of M. tuberculosis, inactivation by calmodulin and inhibition of specific NADH-dehydrogenase type II. The literature data indicate that thioridazine is able to increase the activity of isoniazid against the strains of mycobacteria that are susceptible and resistant to its action. It has been established that resistance to thioridazine in antibiotic-resistant M. tuberculosis strains is not formed. The drug is characterized by its ability to inhibit the growth and reproduction of both methicylin-sensitive (MSSA) and methicilin-resistant (MRSA) strains of Staphylococcus aureus, which has been proven within in vitro experiments. The effectiveness of thioridazine has been proven within in vivo experiments in case of skin infection and sepsis caused by S. aureus. Antimicrobial effect of the drug is also observed towards to plasmodium (P. falciparum) and trypanosomes (Trypanosoma spp.). Currently, the synthesis of thioridazine derivatives is carried out to identify compounds with a pronounced antibacterial effect. Some of the first synthesized compounds are not inferior or superior to thioridazine by the inhibitory effect. Thus, these data suggest that drugs of different pharmacological groups, including drugs that affect the nervous system - thioridazine and its derivatives, can be a source of replenishment of the arsenal of antimicrobial drugs to control such threatening infections as tuberculosis and diseases caused by polyresistant strains of microorganisms.


Sign in / Sign up

Export Citation Format

Share Document