scholarly journals Analysis on Inlet Nozzle Design Geometry of Tesla Turbine

2021 ◽  
Vol 2129 (1) ◽  
pp. 012073
Author(s):  
Sufi Halim ◽  
Md Tasyrif Abdul Rahman ◽  
Anas Abdul Rahman ◽  
Nasrul Amri Mohd Amin ◽  
Nur Shuhaila Roslan ◽  
...  

Abstract Tesla turbine is a bladeless turbine that uses a set of discs arranged at a certain distance to rotate and one of the parameters controlling turbine performance is the inlet parameter. The purpose of this study is to optimize the design of the inlet nozzle and analyse its effects on the flow of the fluid. A total of four nozzle designs have been proposed using CATIA while the Solidworks Flow Simulator is used to analyse the fluid flow at various inlet velocities. Then, the most efficient design is then fabricated via 3D printing and put to test by connecting it with the actual Tesla turbine model. Through the results obtained from the analysis, it is observed that Design 4 is the most efficient of all tested nozzles and the highest RPM and output voltage achieved from the nozzle is 7940 RPM and 13.56 V. The difference in velocity and pressure increases as the area of the nozzle outlet reduces, whereas nozzle efficiency decreases as the inlet velocity increases. The result of this study is a source material for increasing the effectiveness of an alternative power turbine in generating electricity by manipulating the inlet design geometry.

SINERGI ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 73 ◽  
Author(s):  
Hamzah Eteruddin ◽  
Atmam Atmam ◽  
David Setiawan ◽  
Yanuar Z. Arief

People can make solar energy alternative energy by employing solar panels to generate electricity. The utilization of solar energy on a solar panel to generate electricity is affected by the weather and the duration of the radiation, and they will affect the solar panel’s temperature. There are various types of solar panels that can be found on the market today, including Mono-Crystalline and Poly-Crystalline. The difference in the material used needs to be observed in terms of temperature changes in the solar module. Our study’s findings showed that a change in the temperature would impact the solar panel’s output voltage, and the solar panel’s output voltage would change when it was connected to the load although the measured temperatures were almost the same.


2021 ◽  
Vol 9 (1) ◽  
pp. 46-49
Author(s):  
Fathoni ◽  
Agus Pracoyo ◽  
Totok Winarno ◽  
Rizal Sabillah

Changing the dc sgnal to ac signal is done for te purpose of load regulations, such as the ac motor speed, heater and lamp. Inverter work is done by ac rectification first and then converted again to a 1 phase ac signal. The ac output signal is a sinosoidal PWM (SPWM) type of unipolar 220 volts from the input 24 volt dc voltage. Unipolar SPWM signal generation is done by a microcontroller with programming. The number of counts (resolutions) of the SPWM signal and the period are set from the amount in the register, can be set to 8 bits or other constants. The power part of the SPWM inverter is the N channel MOSFET bridge circuit H with IR2110 solid state driver. Step transformer as a load while step-up the inverter output voltage. Determination of the output frequency is set through a rotary encoder that can be adjusted up (increment) or down (decrement). There are 5 frequency variations, namely 30, 40, 50, 60 and 70 Hz. To get the inverter efficiency, the type of MOSFET used is chosen to have the type that has a low RDS (on) value and the right driving pulse, according to the switch configuration. Measurement of the output frequency is done by reading the image on the osciloscope. The observations show a frequency value that is almost the same as the constant. The test results show the difference in output voltage which is reduced at a 30 watt load.


1991 ◽  
Vol 81 (4) ◽  
pp. 1292-1308
Author(s):  
Steven R. Taylor ◽  
Farid U. Dowla

Abstract The yields of 299 NTS explosions have been estimated from Pn, Pg and Lg spectra (between 0.1 and 10 Hz) at four regional seismic stations. A spectral template matching technique is used where the spectra from an explosion of unknown yield are compared with the spectra of explosions of known yield. A matching function is defined that is a scaled inverse of the difference between the spectra from the known and unknown explosions. The yields from the seven closest matching explosions are then averaged to estimate the yield of the unknown event. The spectral matching technique appears to perform as well as standard regression techniques utilizing mb(Pn) and mb(Lg) measurements except that no geologic information (such as gas-filled porosity) is required. However, the spectral matching technique is only applicable to very well-calibrated test sites. The key to spectral matching is that the spectral shape is sensitive to the near-source geology. In addition to affecting the absolute spectral levels (i.e., coupling), the dynamic response of the near source material to the radiated shock wave is a major factor controlling the shape of the radiated spectra. The spectral shape can therefore be used as an indicator for predicting the coupling of an explosion, which can be subsequently used to predict its yield.


2011 ◽  
Vol 383-390 ◽  
pp. 1386-1390 ◽  
Author(s):  
Yan Pin Li ◽  
Hai Peng Nan ◽  
Kai Chuang Duan

The author analyzed the working environment of special hydraulic turbine for cooling tower basing on the difference between the special turbine for cooling tower and the conventional power turbine. The former works in series pressure system and the water head determined by the pipeline resistance and the property of circulating water pump of cooling tower. It is the key to transform the cooling tower system successfully and save energy to build up a series special theories which include the specific speed of turbine for cooling tower, the type of turbine, the parameters selection, the design of the flow passage and runner of turbine by effectively transforming the conventional power turbine theory to the special turbine of cooling tower.


Author(s):  
T. L. Bowen

The feasibility of an isolated reverse turbine concept for marine propulsion was examined with emphasis on (1) the reverse turbine size needed to meet the stopping distance requirement of a particular ship during a crashback maneuver, and (2) the ahead turbine performance penalty due to reverse turbine windage losses. This particular reverse turbine system was made adaptable to the exhaust elbow and output shaft of an existing free-power-turbine gas turbine. The analysis was based on the application of this reverse turbine concept to a notational single-shaft frigate. The study-ship’s propulsion system includes two General Electric LM2500 gas turbines with reversing capability, a reduction gear, and a fixed-pitch propeller. A ship propulsion simulation was developed for the purpose of calculating steady-state ahead and backing performance data, as well as transient behavior of the ship during crashback maneuvers. The reverse turbine’s speed and torque required to stop the ship in five ship-lengths and 3.5 ship-lengths were determined from these calculations. Four reverse turbine designs were generated using a computer program for preliminary design of axial-flow turbines. The designs included a single-stage and a two-stage impulse turbine for both stopping distances. The penalty on ahead performance due to reverse turbine windage was estimated for each design, using existing experimental data found in the literature. The results obtained thus far tend to support the feasibility of this reverse turbine concept.


2018 ◽  
Author(s):  
Tao Wang ◽  
Yong-sheng Tian ◽  
Zhao Yin ◽  
Qing Gao ◽  
Chun-qing Tan

This paper proposes an inlet guide vane control law optimization technique for improving the off-design working condition thermal efficiency of triaxial gas turbine. Gas turbine dynamic and steady component-level simulation models are established in MATLAB/SIMULINK via Newton-Raphson algorithm based on component characteristic maps. After validating the models against experimental data and Gasturb software, they are applied to determine the effects of guide vane angle on gas turbine performance parameters. High Efficiency Mode (HEM) is utilized to adjust the power turbine inlet guide vanes to enhance the gas turbine efficiency and decrease the specific fuel consumption under off-design working conditions on account of the above gas turbine overall performance analysis results. The optimal angles of power turbine inlet guide vanes for various working conditions are acquired based on the steady gas turbine model as-established. HEM enhances the gas turbine’s thermal efficiency without exceeding its temperature or rotational speed constraints. The Radial Basis Function (RBF), a three-layer, feedforward neural network, is employed to fit the optimal guide vane angles and establish the corresponding relationship between the angles and various working conditions by system identification. The control strategy and gas turbine dynamic simulation model are tested in MATLAB/SIMULINK to verify their effects on gas turbine performance. The guide vane angle is found to significantly influence the gas turbine operating parameters, and HEM to effectively optimize gas turbine performance even within unpredictable atmospheric environment and working conditions.


1996 ◽  
Vol 428 ◽  
Author(s):  
Nguyen D. Bui

AbstractEffects of finite source material, in multilevel interconnect systems, on reliability has been investigated. Two types of novel test structures were used in this study: 1] asymmetrical design structure in width and thickness for the top and bottom conductor layers, 2] symmetrical design structure in width and thickness for the top and bottom conductor layers. The results of the asymmetric contact and via chains studies showed that the electromigration lifetimes were not effected by the difference in the magnitude of the finite source material. The electromigration lifetimes of the symmetrical via structure, in width and thickness for the top and bottom conductor layers, exhibited a strong dependence on the finite source material. A failure model is proposed to explain the effect of finite source material on electromigration performance in such interconnect systems.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Richard C. Jaeger ◽  
Mohammad Motalab ◽  
Safina Hussain ◽  
Jeffrey C. Suhling

Under the proper orientations and excitations, the transverse output of rotationally symmetric four-contact van der Pauw (VDP) stress sensors depends upon only the in-plane shear stress or the difference of the in-plane normal stresses on (100) silicon. In bridge-mode, each sensor requires only one four-wire measurement and produces an output voltage with a sensitivity that is 3.16 times that of the equivalent resistor rosettes or bridges, just as in the normal VDP sensor mode that requires two separate measurements. Both numerical and experimental results are presented to validate the conjectured behavior of the sensor. Similar results apply to sensors on (111) silicon. The output voltage results provide a simple mathematical expression for the offset voltage in Hall effect devices or the response of pseudo Hall-effect sensors. Bridge operation facilitates use of the VDP structure in embedded stress sensors in integrated circuits.


Sign in / Sign up

Export Citation Format

Share Document