Service Exchange or Major Overhaul. Which Philosophy to Implement for Gas Turbine

2021 ◽  
Author(s):  
Karim Mamdouh Youssef

Abstract Maintenance costs and machine availability are two of the most important concerns to gas turbine equipment owner. Therefore, a well thought out maintenance program that reduces costs while increasing equipment availability should be instituted. The correct implementation of planned maintenance relying on preventive maintenance optimization through perfect inspection frequency and scope provides direct benefits in the avoidance of forced outages, unscheduled repairs, and downtime. Major overhaul is carried out for each gas turbine every 48,000 firing hours which costs around 1 M USD for each engine and with more than 8 months unavailability for the unit. To increase equipment availability and enhance cost and time efficiency, alternatives approaches were evaluated including Service Exchange of gas turbines. It is found that service exchange is the best option for optimizing time and cost of overhaul of such engines. This paper is written to improve Major Overhaul practice for existing Gas Turbines from ongoing practice of routine major overhaul including engine strip down, inspection and repair to Service Exchange of Gas Generator and Power Turbine every 48,000 firing hours.

Author(s):  
Deepak Thirumurthy ◽  
Jose Carlos Casado Coca ◽  
Kanishka Suraweera

Abstract For gas turbines with free power turbines, the capacity or flow parameter matching is of prime importance. Accurately matched capacity enables the gas turbine to run at its optimum conditions. This ensures maximum component efficiencies, and optimum shaft speeds within mechanical limits. This paper presents the challenges, uncertainties, and opportunities associated with an accurate matching of a generic two-shaft aeroderivative HP-LP gas generator with the free power turbine. Additionally, generic performance trends, uncertainty quantification, and results from the verification program are also discussed. These results are necessary to ensure that the final free power turbine capacity is within the allowable range and hence the product meets the performance guarantees. The sensitivity of free power turbine capacity to various design variables such as the vane throat area, vane trailing edge size, and manufacturing tolerance is presented. In addition, issues that may arise due to not meeting the target capacity are also discussed. To conclude, in addition to design, analysis, and statistical studies, a system-of-systems approach is mandatory to meet the allowed variation in the free power turbine capacity and hence the desired gas turbine performance.


Author(s):  
Tao Wang ◽  
Yong-Sheng Tian ◽  
Zhao Yin ◽  
Da-Yue Zhang ◽  
Ming-Ze Ma ◽  
...  

This paper proposes a hybrid method (HMRC) comprised of a radial basis function (RBF) neural net algorithm and component-level modeling method (CMM) as a real-time simulation model for triaxial gas turbines with variable power turbine guide vanes in matlab/simulink. The sample size is decreased substantially after analyzing the relationship between high and low pressure shaft rotational speeds under dynamic working conditions, which reduces the computational burden of the simulation. The effects of the power turbine rotational speed on overall performance are also properly accounted for in the model. The RBF neural net algorithm and CMM are used to simulate the gas generator and power turbine working conditions, respectively, in the HMRC. The reliability and accuracy of both the traditional single CMM model (SCMM) and HMRC model are verified using gas turbine experiment data. The simulation models serve as a controlled object to replace the real gas turbine in a hardware-in-the-loop simulation experiment. The HMRC model shows better real-time performance than the traditional SCMM model, suggesting that it can be readily applied to hardware-in-the-loop simulation experiments.


Author(s):  
J. K. Hubbard ◽  
R. Tillinger

The paper describes the development and field experience of the model DJ270G Gas Turbine, the second of the manufacturer’s “second generation” gas turbines. By combining the merits of a proven aero-derivative gas generator with an advanced power turbine, the DJ270G has been developed to provide a reliable and efficient dual shaft gas turbine. Previously established power turbine design concepts were uniquely modified to maximize the overall efficiency of the unit. The introduction rate was advanced by running the development and manufacturing programs simultaneously. Field development was minimized by completing a full load performance test program in the factory prior to start-up of the first field unit. The completed machine has achieved an output of 27,400 horsepower with a thermal efficiency of 36.3%. Four units are now in operation and have logged over 33,000 hours of successful operation.


1991 ◽  
Vol 113 (2) ◽  
pp. 290-295 ◽  
Author(s):  
H. Kumakura ◽  
T. Matsumura ◽  
E. Tsuruta ◽  
A. Watanabe

A control system has been developed for a high-quality generating set (150-kW) equipped with a two-shaft gas turbine featuring a variable power turbine nozzle. Because this generating set satisfies stringent frequency stability requirements, it can be employed as the direct electric power source for computer centers without using constant-voltage, constant-frequency power supply systems. Conventional generating sets of this kind have normally been powered by single-shaft gas turbines, which have a larger output shaft inertia than the two-shaft version. Good frequency characteristics have also been realized with the two-shaft gas turbine, which provides superior quick start ability and lower fuel consumption under partial loads.


Author(s):  
Keisuke Makino ◽  
Ken-Ichi Mizuno ◽  
Toru Shimamori

NGK Spark Plug Co., Ltd. has been developing various silicon nitride materials, and the technology for fabricating components for ceramic gas turbines (CGT) using theses materials. We are supplying silicon nitride material components for the project to develop 300 kW class CGT for co-generation in Japan. EC-152 was developed for components that require high strength at high temperature, such as turbine blades and turbine nozzles. In order to adapt the increasing of the turbine inlet temperature (TIT) up to 1,350 °C in accordance with the project goals, we developed two silicon nitride materials with further unproved properties: ST-1 and ST-2. ST-1 has a higher strength than EC-152 and is suitable for first stage turbine blades and power turbine blades. ST-2 has higher oxidation resistance than EC-152 and is suitable for power turbine nozzles. In this paper, we report on the properties of these materials, and present the results of evaluations of these materials when they are actually used for CGT components such as first stage turbine blades and power turbine nozzles.


1970 ◽  
Author(s):  
D. A. Prue ◽  
T. L. Soule

The next generation of free-turbine engines in the 2 to 5-lb/sec airflow class will undergo vast improvements in performance and efficiency. The improvements will be achieved concurrent with overall reductions in size and weight. Effort is required at optimization and miniaturization of the engine control system to keep pace with these improvements. This paper describes a conceptual design of an advanced engine control system for this class of engine. It provides gas generator and power turbine control with torque, temperature, load sharing and overspeed limiting functions. The control system was concepted to accommodate, with minimum hardware changes, such variants as regenerative cycle and/or variable power turbine geometry. In addition, considerations for closed and open loop modes of control and fluidic, electronic and hydromechanical technologies were studied to best meet a defined specification and a weighted set of evaluation criteria.


Author(s):  
Jie Gao ◽  
Feng Lin ◽  
Xiying Niu ◽  
Qun Zheng ◽  
Guoqiang Yue ◽  
...  

The marine gas turbine exhaust volute is an important component that connects a power turbine and an exhaust system, and it is of great importance to the overall performance of the gas turbine. Gases exhausted from the power turbine are expanded and deflected 90 degrees in the exhaust volute, and then discharge radially into the exhaust system. The flows in the power turbine and the nonaxisymmetric exhaust volute are closely coupled and inherently unsteady. The flow interactions between the power turbine and the exhaust volute have a significant influence on the shrouded rotor blade aerodynamic forces. However, the interactions have not been taken into account properly in current power turbine design approaches. The present study aims to investigate the flow interactions between the last stage of a shrouded power turbine and the nonaxisymmetric exhaust volute with struts. Special attention is given to the coupled aerodynamics and pressure response studies. This work was carried out using coupled computational fluid dynamics (CFD) simulations with the computational domain including a stator vane, 76 shrouded rotor blades, 9 struts and an exhaust volute. Three-dimensional (3D) unsteady and steady Reynolds-averaged Navier-Stokes (RANS) solutions in conjunction with a Spalart-Allmaras turbulence model are utilized to investigate the aerodynamic characteristics of shrouded rotors and an exhaust volute using a commercial CFD software ANSYS Fluent 14.0. The asymmetric flow fields are analyzed in detail; as are the unsteady pressures on the shrouded rotor blade. In addition, the unsteady total pressures at the volute outlet is also analyzed without consideration of the upstream turbine effects. Results show that the flows in the nonaxisymmetric exhaust volute are inherently unsteady; for the studied turbine-exhaust configuration the nonaxisymmetric back-pressure induced by the downstream volute leads to the local flow varying for each shrouded blade and low frequency fluctuations in the blade force. Detailed results from this investigation are presented and discussed in this paper.


Author(s):  
R. P. op het Veld ◽  
J. P. van Buijtenen

This paper investigates the layout and achievable efficiencies of rotating components of a Helium gas turbine. This is done by making a preliminary design of the compressor and turbine needed for the power conversion in a combined heat and power plant with a 40 MWth nuclear high temperature reactor as a heat source. State of the art efficiency values of air breathing gas turbines are used for the first calculations. The efficiency level is corrected by comparing various dimensionless data of the Helium turbomachine with an air gas turbine of similar dimensions. A single shaft configuration with a high speed axial turbine will give highest performance and simple construction. If a generator has to be driven at a conventional speed, a free power turbine configuration must be chosen. The choice of the configuration depends among others on the cost and availability of the asynchrone generator and frequency convertor.


Author(s):  
Brian Elmegaard ◽  
Bjo̸rn Qvale

Recuperated gas turbines are currently drawing an increased attention due to the recent commercialization of micro gas turbines with recuperation. This system may reach a high efficiency even for the small units of less than 100kW. In order to improve the economics of the plants, ways to improve their efficiency are always of interest. Recently, two independent studies have proposed recuperated gas turbines to be configured with the turbine expansion divided, in order to obtain higher efficiency. The idea is to operate the system with a gas generator and a power turbine, and use the gas from the gas generator part for recuperation ahead of the expansion in the power turbine. The present study is more complete than the predecessors in that the ranges of the parameters have been extended and the mathematical model is more realistic using an extensive simulation program. It is confirmed that the proposed divided expansion can be advantageous under certain circumstances. But, in order for todays micro gas turbines to be competitive, the thermodynamic efficiencies will have to be rather high. This requires that all component efficiencies including the recuperator effectiveness will have to be high. The advantages of the divided expansion manifest themselves over a rather limited range of the operating parameters, that lies outside the range required to make modern micro turbines economically competitive.


Author(s):  
Abdullah N. AlKhudhayr ◽  
Abdulrahman M. AlAdel

Abstract A gas turbine is a reliable type of rotating equipment, utilized in various applications. It is well known in power generation and aviation. In the oil and gas industry, gas turbines are utilized in locations with limited electrical power or a high power driven load requirement, such as offshore or a high-rated power 20MW compressor. Five gas turbines are used as mechanical drive equipment. After a few years of operation, the gas turbines were experiencing high operating temperatures in bearings, turbine compartments, high spread temperature, and the presence of smoke in the exhaust. During a major overhaul of the turbines, oil was found to have accumulated internally in the wrapper casing, along with damage to several internal combustion components. In one case, the exhaust casing experienced severe damage with deformation. This paper presents a case study of a gas turbine failure and its contributors. The paper explains the mitigated solution to overcome the challenges related to the gas turbine operation, maintenance, and machine design.


Sign in / Sign up

Export Citation Format

Share Document