scholarly journals ANALYSIS OF EMBANKMENT SLOPE STEEPNESS AND STABILITY

2022 ◽  
Vol 14 (0) ◽  
pp. 1-5
Author(s):  
Tadas Tamošiūnas

This paper describes the stability calculations of the most common road embankments slopes and their results using the modified Bishop method. By searching for the smallest possible effective angle of internal friction of the different slope steepness embankments, the possible different bases of the embankment, the weight of the embankment soil, the load caused by transport and the location of load application (shoulder) were evaluated. Analyzing the obtained calculation results, it was determined that at a slope of 1:2 (26.57°) steepness, to ensure slope stability, the calculated effective internal friction angle of the embankment soil should be φʹd ≥ 28.5°, and at a slope of 1:1.75 (29.74°) steepness – φʹd ≥ 29.8°. When the slope is 2:3 (33.69°) steepness, the stability of the slope cannot be guaranteed.

2019 ◽  
Vol 12 (6) ◽  
pp. 163-169
Author(s):  
C. Rajakumar ◽  
P. Kodanda Rama Rao

The slope stability analysis is always under severe threats in many parts of nilgiris district, causing disruption, loss of human life and economy. The stability of slopes depends on the soil shear strength parameters such as Cohesion, Angle of internal friction, Unit weight of soil and Slope geometry. The stability of a slope is measured by its factor of safety using geometric and shear strength parameter based on infinite slopes. In this research, investigation was carried out at 5 locations in Kattery watershed in nilgiris district. The factor of safety of the slope determined by Mohr Coulomb theory based on shear strength parameter calculated from direct shear test which is a conventional procedure for this study. Artificial. Neural Network (ANN) Model is used to predict the factor of safety. The input parameters for the (ANN) are chosen as Cohesion, Angle of internal friction, Density and Slope angle and the factor of safety as output. The results obtained in ANN method were compared with that of conventional method and observed a good agreement between these two methods.


2012 ◽  
Vol 204-208 ◽  
pp. 446-451
Author(s):  
Yu Lin Qian ◽  
Fei Yan Wang ◽  
Xiao Wei Li

A series of consolidation and drainage unsaturated triaxial tests on remolded samples were carried out at controlled matrix suction and confining pressure through automatic GDS triaxial apparatus. According to the shear strength of unsaturated silt, the results show the matrix suction has a little influence on effective angle of internal friction, while has great influence on failure modes and cohesion. With the increasing of matrix suction, stress-strain curves translate from hardening type to softening type, the effective angle of internal friction changes a little and is approximately equal to the effective angle of internal friction of saturated soil, cohesion is significantly improved. Matrix suction friction angle is not a constant, when the matrix suction is less than 100kPa, it decreases with matrix suction increasing, the rate of decrease reduces gradually; when matrix suction is greater than 100kPa, it tends to be a fixed value. The results are consistent to modified strength theory proposed by Fredlund.


2013 ◽  
Vol 706-708 ◽  
pp. 504-507 ◽  
Author(s):  
Di Wu ◽  
Peng Wang ◽  
Guo Qiang Liu

In recent years, soil nailing wall supporting technology is widely applied in the design of pit supporting. However, in the design of deep foundation pit supporting in miscellaneous fill site, the values of cohesion and angle of internal friction, that is c and φ, are too conservative to be chosen, so the security and economy cannot be obtained together. To study the influence of c and φ values on deep foundation pit supporting design in miscellaneous fill site, Lizheng-FSPw60 was the analysis software, and the circular sliding simple slice method was the theory. It is concluded that cohesion and internal friction angle of the soil have great influence on the stability of the soil nailing wall. Analysis and practice show that if c and φ values are reasonably chosen, the slope supported by soil nailing wall in thick miscellaneous fill site will be much safer, and the project will be less wasteful.


2012 ◽  
Vol 204-208 ◽  
pp. 241-245
Author(s):  
Yang Jin

The stability of soil slope under seepage is calculated and analyzed by using finite element method based on the technique of shear strength reduction. When the condition of seepage or not is considered respectively, the critical failure state of slopes and corresponding safety coefficients can be determined by the numerical analysis and calculation. Besides, through analyzing and comparing the calculation results, it shows that seepage has a negative impact on slope stability.


2018 ◽  
Vol 195 ◽  
pp. 03013 ◽  
Author(s):  
Purwanto B. Santoso ◽  
Yanto ◽  
Arwan Apriyono ◽  
Rani Suryani

The causes of landslides can be categorized into three factors: climate, topographic, and soil properties. In many cases, thematic maps of landslide hazards do not involve slope stability analyses to predict the region of potential landslide risks. Slope stability calculation is required to determine the safety factor of a slope. The calculation of slope stability requires the soil properties, such as soil cohesion, the internal friction angle and the depth of hard-rock. The soil properties obtained from the field and laboratory investigation from the western part of Central Java were interpolated using Inverse Distance Weighting (IDW) to estimate the unknown soil properties in the gridded area. In this research, the IDW optimum parameter was determined by validation toward the percent bias. It was found that the IDW interpolation using higher weighting factor corresponds with a higher percent bias in case of the depth of hard-rock and soil cohesion, while the opposite was found for the internal friction angle. Validation to landslide incidents in western parts of Central Java shows that the majority of landslide incidents occur at depths of hard rock of 6 m-8 m, at soil cohesions of 0.0 kg/cm2-0.2 kg/cm2, and at internal friction angles of 30°-40°.


2018 ◽  
Vol 53 ◽  
pp. 03076
Author(s):  
RUAN Jin-kui ◽  
ZHU Wei-wei

In order to study the sensitivity of factors affecting the homogeneous building slope stability, the orthogonal test design method and shear strength reduction finite element method were used. The stability safety factor of the slope was used as the analysis index, and the range analysis of results of 18 cases were carried out. The results show that the order of sensitivity of slope stability factors is: internal friction angle, slope height, cohesion, slope angle, bulk density, elastic modulus, Poisson's ratio. The analysis results have reference significance for the design and construction of building slope projects.


1966 ◽  
Vol 3 (4) ◽  
pp. 204-216
Author(s):  
Nyal E Wilson ◽  
Henry R Krzywicki

A fundamental approach to mobility by studying deformations and stresses in a soil as a wheel moves is described. A driven rigid model wheel was constructed to run over a sample of amorphous granular peat. Metal markers were placed throughout the peat and records of their movements, using an X-ray technique, were obtained as the wheel travelled over the peat. The markers moved in cardioids (heart shapes). The marker movement for any location within the sample was obtained from relationships which existed between the movement of the markers and the positions of the wheel.The trajectories of the principal stresses were determined from the deformations by a graphical method. Using an assumption regarding the angle of internal friction for this peat, the surfaces of maximum shear were obtained. The surfaces of maximum shear resembled the configurations associated with slope stability problems in soil mechanics.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Zhiguo Chang ◽  
Qingxiang Cai ◽  
Li Ma ◽  
Liu Han

With open-pit mines excavated, the slopes will be exposed to the natural environment for a long time. Affected by factors like temperature, seepage, mining, freeze-thaw, etc., slope structural integrity and strength will gradually decline as slope exposure time extends. Besides, the development of defect structure within the rocks is closely correlated with time. In this paper, freeze-thaw cycle tests were conducted on the saturated sandstones collected from a certain open-pit mine. According to the test results, the mass density and longitudinal wave velocity gradually increased with more times of freeze-thaw cycles while mechanical properties such as internal friction angle, cohesion, elastic modulus, and uniaxial compressive strength decreased instead. The constitutive model of saturated rock deterioration was established by taking the volume of phase transition of water in microcracks as a variable. Based on the tests results and theoretical analysis, the sensitivity of the factors affecting slope stability under freeze-thaw damage was studied by Control Variable Method (CVM) and Orthogonal Design Method (ODM). It was determined that the internal friction angle and cohesion had a highly significant effect on the test results, while the mass density had a significant effect. The conclusions may play a certain role in guiding slope construction and protection.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1086
Author(s):  
Andrzej Gruchot ◽  
Tymoteusz Zydroń ◽  
Agata Michalska

The paper presents the results of tests of the shear strength of the ash–slag mixture taken from the landfill located in Kraków (Poland) and the interfacial friction resistance at the contact between the ash–slag mixture and woven or nonwoven geotextiles. The tests were carried out in a direct shear apparatus on samples with and without water saturation. The samples for testing were formed in the apparatus box at the optimum moisture by compacting them to IS = 0.90 and 1.00. The test results reveal that the shear strength parameters of the ash-slag mixture were large. It was stated the significant influence of the compaction, the growth of which has resulted in an increase in the angle of internal friction (from 7% to 9%) and cohesion (from 60% to 97%). Whereas the saturation of the samples reduced the shear strength parameters (from 4% to 6%, of the internal friction angle and 30% to 43% of cohesion). The values of the interfacial friction resistance at the contact between the ash–slag mixture and the geotextiles were large as well, but slightly smaller than the values of the shear strength parameters of the mixture itself. The compaction caused an increase in the angle of interfacial friction (from 1% to 5%) and adhesion (from 31% to 127%). The water-saturation of the samples caused a change in the angle of interfacial friction (from −6% to 3%) and decline in the adhesion (from 22% to 69%). Values of the interaction coefficient were about 0.8–1.0 and they tended to rise with increasing the normal stress. Higher values of this parameter were obtained in tests with water saturation and for non-woven geotextiles.


2019 ◽  
Vol 270 ◽  
pp. 02004
Author(s):  
Kongkit Yingchaloenkitkhajorn

This paper presented the analysis of embankment slope stability by considering the problem of embankment slope stability with special effects that it was filled with sand and was placed on purely cohesive clay. The finite element limit analysis of two-dimensional plane strain was employed to analyze the stability of this problem. The embankment slope height (H), the depth factors (d/H) and the embankment slope angle (β) for the finite element limit analysis of sand was modeled as a volume element with the properties of Mohr-Coulomb material in drained condition. And the clay was modeled as a volume element with the properties of Tresca material in undrained condition where the parameters were soil unit weight (γ), undrained shear strength (su) and friction angle (φ′). Parametric studies consisted of three dimensionless variables including depth factors (d/H), friction angle (φ′) and embankment slope angle (β). Results were summarized in the form of the dimensionless stability number (su/γH(FS)) and the design chart and application were presented. In addition, the comparison of the solution of stability number with the limit equilibrium methods and the failure mechanisms were also proposed in this paper.


Sign in / Sign up

Export Citation Format

Share Document