scholarly journals Flexible TiO2/PVDF/g-C3N4 Nanocomposite with Excellent Light Photocatalytic Performance

Polymers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 55 ◽  
Author(s):  
Tong-Tong Zhou ◽  
Feng-He Zhao ◽  
Yu-Qian Cui ◽  
Li-Xiang Chen ◽  
Jia-Shu Yan ◽  
...  

As the world faces water shortage and pollution crises, the development of novel visible light photocatalysts to purify water resources is urgently needed. Over the past decades, most of the reported photocatalysts have been in powder or granular forms, creating separation and recycling difficulties. To overcome these challenges, a flexible and recyclable heterostructured TiO2/polyvinylidene fluoride/graphitic carbon nitride (TiO2/PVDF/g-C3N4) composite was developed by combining electrospinning, sintering and hydrothermal methods. In the composite, PVDF was used as a support template for removing and separating the photocatalyst from solution. Compared with pure TiO2, the TiO2/PVDF/g-C3N4 composite exhibited the extended light capture range of TiO2 into the visible light region. The photogenerated carriers were efficiently transferred and separated at the contact interface between TiO2 and g-C3N4 under visible light irradiation, which consequently increased the photocatalytic activity of the photocatalyst. In addition, the flexible composites exhibited excellent self-cleaning properties, and the dye on the photocatalysts was completely degraded by the as-prepared materials. Based on the intrinsic low cost, recyclability, absorption of visible light, facile synthesis, self-cleaning properties and good photocatalytic performances of the composite, the photocatalyst is expected to be used for water treatment.

2010 ◽  
Vol 148-149 ◽  
pp. 1208-1211 ◽  
Author(s):  
Shao You Liu ◽  
Qing Ge Feng

Uranium doped TiO2 (U-TiO2) nanomaterials, determined by scanning electron micro- graphy (SEM), were successfully synthesized via a simple, effective and environmental benign solid state reaction route. The characterizations via XRD and XPS showed that the uranium has been entered into the framework of anatase TiO2. The DRUV-Vis revealed that the adsorption region of U-TiO2 nanomaterials shifts to the visible light region compared with the pure TiO2. Moreover, the U-TiO2 nanomaterials for photodegradation of quinoline showed a good photocatalytic properties under visible light irradiation. At 298K, within 60 min visible light irradiation, 54.9 % of the initial quinoline was degraded by the U-TiO2 (U/Ti=3:20) catalyst. The visible light degradation rate of the U-TiO2 nanomaterials is negative to the pH value of surface but positive to the visible light absorption range.


2011 ◽  
Vol 694 ◽  
pp. 602-607
Author(s):  
Yong Qiang Wang ◽  
Fang Liu ◽  
Chao Cheng Zhao

Sulfur-doped titanium dioxide powders (SxTi1-xO2) was prepared by calcinations, that is, the hydrolysis of acidic tetra-butyl tianate using thiourea in ethanol, followed by calcinations at temperatures about 500°C. Based on the characterizations of XRD, BET, surface photovoltage spectroscopy (SPS), electric-field-induced surface photovoltage spectroscopy (EFISPS) and XPS, it was found that the sulfur could restrain the crystallization transformation of TiO2 from anatase to rutile, although the calcinations temperature has attained 500°C, the crystallization still were anatase entirely. The catalysts exhibited photocatalytic activity in the visible light region owing to S-doping. The light absorption onset of SxTi1-xO2 was shifted to the visible region at 550nm compared to 329nm of pure TiO2. In the crystal, the S atoms occupied some of the lattice titanium atoms for form S-O bonds. Photocatalytic decomposition of benzoic acid solutions was carried out under simulated sun light, and the SxTi1-xO2 catalyst showed higher activity than pure TiO2.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 661
Author(s):  
Xi Lin ◽  
Yanxia Li

In order to degrade toxic pollutants such as dyes during the process of sewage treatment, considerable attention has been paid to photocatalytic technologies. In this paper, TiO2/Ag[BMIM]Cl (1-butyl-3-methyl imidazolium chloride ([BMIM]Cl)) nanocomposites were prepared with TiO2 as the carrier, silver ions as dopants and ionic liquids (IL) as modifiers. The morphologies, microstructures, crystalline structure and optical properties of the TiO2/Ag[BMIM]Cl nanospheres are investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), total organic carbon (TOC), and UV-vis diffuse reflectance spectrum (UV-vis DRS) techniques. The TiO2/Ag[BMIM]Cl nanocomposites can selectively degrade rhodamine B (Rh B) under visible light because of the unstable quaternary ammonium salt. The as-obtained nanocomposites exhibit better photocatalytic activity performance than pure TiO2, TiO2/IL, and TiO2/Ag+. The experimental results show that the Rh B degradation rate can reach 98.87% under optimized producing conditions by using the TiO2/Ag[BMIM]Cl composites as the catalyzer. It shows that simultaneous doping with silver ions and ionic liquids can significantly improve the photocatalytic activity of TiO2 in Rh B degradation, indicating the formation of photosensitive AgCl in the process of TiO2/Ag[BMIM]Cl preparation. Ag+ and IL addition exchange the band gap of TiO2 and lengthen the visible wavelength range of the composite. The material has the advantages of low cost, facile preparation and reusability with the excellent degradation effect of Rh B.


2020 ◽  
Vol 9 (3) ◽  
pp. 21-26
Author(s):  
Hoa Dang Thi Ngoc ◽  
Tu Nguyen Thi Thanh

In this study, an efficient strategy for the synthesis of solvent titanium dioxide and titanium dioxide/graphitic carbon nitride (TiO2/g-C3N4) heterostructure photocatalyst was applied to fabricate a kind of visible-light-driven photocatalyst. The obtained samples were  characterised  by  means of  X-ray diffraction, infrared spectroscopy, ultraviolet–visible spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy and photoluminescence. The heterostructure shows higher absorption edge towards harvesting more solar energy compared with pure TiO2 and pure g-C3N4 respectively. The  photocatalytic  behaviour  under  visible light  and  kinetics of  the TiO2/g-C3N4 catalyst via methylene blue degradation were addressed. The results showed that the introduction of solvent titanium dioxide  into g-C3N4 enhanced  the  photocatalytic activity in  the  visible  light region.  TiO2/g-C3N4 is  potential  visible  light  driven photocatalyst  for  the  organic substances degradation in aqueous solutions.


2021 ◽  
Author(s):  
Xiaojing Zhang ◽  
xinyi Ge ◽  
Zhigang Shen ◽  
Han Ma ◽  
Jingshi Wang ◽  
...  

Compared with environmentally harmful binder polyvinylidene fluoride (PVDF) in Li-ion batteries (LIBs), water-based binders have many advantages, such as low cost, rich sources and environmental friendliness. In this study, various...


Author(s):  
Yanwen Wang ◽  
Rong Liang ◽  
Chao Qin ◽  
Lei Ren ◽  
Zhizhen Ye ◽  
...  

Antimony sulfide (Sb2S3) is a light absorbing material with strong visible light response, which is suitable for efficient and low-cost photoelectrodes. Nano-structured films have unique advantages in constructing photoelectrodes due...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md Atiqur Rahman ◽  
Mohammad Tariqul Islam ◽  
Mandeep Singh Jit Singh ◽  
Md Samsuzzaman ◽  
Muhammad E. H. Chowdhury

AbstractIn this article, we propose SNG (single negative) metamaterial fabricated on Mg–Zn ferrite-based flexible microwave composites. Firstly, the flexible composites are synthesized by the sol-gel method having four different molecular compositions of MgxZn(1−x)Fe2O4, which are denoted as Mg20, Mg40, Mg60, and Mg80. The structural, morphological, and microwave properties of the synthesized flexible composites are analyzed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and conventional dielectric assessment kit (DAK) to justify their possible application as dielectric substrate at microwave frequency regime. Thus the average grain size is found from 20 to 24 nm, and the dielectric constants are 6.01, 5.10, 4.19, and 3.28, as well as loss tangents, are 0.002, 0.004, 0.006, and 0.008 for the prepared Mg–Zn ferrites, i.e., Mg20, Mg40, Mg60, and Mg80 respectively. Besides, the prepared low-cost Mg–Zn ferrite composites exhibit high flexibility and lightweight, which makes them a potential candidate as a metamaterial substrate. Furthermore, a single negative (SNG) metamaterial unit cell is fabricated on the prepared, flexible microwave composites, and their essential electromagnetic behaviors are observed. Very good effective medium ratios (EMR) vales are obtained from 14.65 to 18.47, which ensure the compactness of the fabricated prototypes with a physical dimension of 8 × 6.5 mm2. Also, the proposed materials have shown better performances comparing with conventional FR4 and RO4533 materials, and they have covered S-, C-, X-, Ku-, and K-band of microwave frequency region. Thus, the prepared, flexible SNG metamaterials on MgxZn(1−x)Fe2O4 composites are suitable for microwave and flexible technologies.


Sign in / Sign up

Export Citation Format

Share Document