scholarly journals Naa12 compensates for Naa10 in mice in the amino-terminal acetylation pathway

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Hyae Yon Kweon ◽  
Mi-Ni Lee ◽  
Max Dorfel ◽  
Seungwoon Seo ◽  
Leah Gottlieb ◽  
...  

Amino-terminal acetylation is catalyzed by a set of N-terminal acetyltransferases (NATs). The NatA complex (including X-linked Naa10 and Naa15) is the major acetyltransferase, with 40-50% of all mammalian proteins being potential substrates. However, the overall role of amino-terminal acetylation on a whole-organism level is poorly understood, particularly in mammals. Male mice lacking Naa10 show no globally apparent in vivo amino-terminal acetylation impairment and do not exhibit complete embryonic lethality. Rather Naa10 nulls display increased neonatal lethality, and the majority of surviving undersized mutants exhibit a combination of hydrocephaly, cardiac defects, homeotic anterior transformation, piebaldism and urogenital anomalies. Naa12 is a previously unannotated Naa10-like paralogue with NAT activity that genetically compensates for Naa10. Mice deficient for Naa12 have no apparent phenotype, whereas mice deficient for Naa10 and Naa12 display embryonic lethality. The discovery of Naa12 adds to the currently known machinery involved in amino-terminal acetylation in mice.

2020 ◽  
Author(s):  
Hyae Yon Kweon ◽  
Mi-Ni Lee ◽  
Max Dörfel ◽  
Seungwoon Seo ◽  
Leah Gottlieb ◽  
...  

AbstractThere is an enormous amount of variation in proteins introduced by co- and post-translational modifications, including N-terminal acetylation (NTA), catalyzed by a set of N-terminal acetyltransferases (NATs). The NatA complex (including X-linked Naa10 and Naa15) is the major acetyltransferase, with 40–50% of all mammalian proteins being potential substrates. However, the overall role of NTA on a whole-organism level is poorly understood, particularly in mammals. Male mice lacking Naa10 show no globally apparent in vivo NTA impairment and, surprisingly, do not exhibit embryonic lethality. Rather Naa10 nulls display increased neonatal lethality, and the majority of surviving undersized mutants exhibit a combination of hydrocephaly, cardiac defects, homeotic anterior transformation (including an extra thoracic rib), piebaldism and urogenital anomalies. The lack of complete embryonic lethality in Naa10-null mice is explained by the discovery of Naa12, a previously unannotated Naa10-like paralogue with NAT activity that genetically compensates for Naa10. Mice deficient for Naa12 have no apparent phenotype, except for decreased fertility, whereas mice doubly deficient for Naa10 and Naa12 display embryonic lethality, thus presenting the complete machinery for NatA-mediated NTA in mouse development.


2001 ◽  
Vol 12 (6) ◽  
pp. 1775-1789 ◽  
Author(s):  
Bettina Peters ◽  
Jutta Kirfel ◽  
Heinrich Büssow ◽  
Miguel Vidal ◽  
Thomas M. Magin

In human patients, a wide range of mutations in keratin (K) 5 or K14 lead to the blistering skin disorder epidermolysis bullosa simplex. Given that K14 deficiency does not lead to the ablation of a basal cell cytoskeleton because of a compensatory role of K15, we have investigated the requirement for the keratin cytoskeleton in basal cells by inactivating the K5 gene in mice. We report that the K5− / − mice die shortly after birth, lack keratin filaments in the basal epidermis, and are more severely affected than K14− / −mice. In contrast to the K14− / −mice, we detected a strong induction of the wound-healing keratin K6 in the suprabasal epidermis of cytolyzed areas of postnatal K5− / − mice. In addition, K5 and K14 mice differed with respect to tongue lesions. Moreover, we show that in the absence of K5 and other type II keratins, residual K14 and K15 aggregated along hemidesmosomes, demonstrating that individual keratins without a partner are stable in vivo. Our data indicate that K5 may be the natural partner of K15 and K17. We suggest that K5 null mutations may be lethal in human epidermolysis bullosa simplex patients.


2003 ◽  
Vol 2 (1) ◽  
pp. 123-133 ◽  
Author(s):  
Cheryl Dixon ◽  
Lee Ellen Brunson ◽  
Mary Margaret Roy ◽  
Dechelle Smothers ◽  
Michael G. Sehorn ◽  
...  

ABSTRACT Ubiquitin ligases direct the transfer of ubiquitin onto substrate proteins and thus target the substrate for proteasome-dependent degradation. SCF complexes are a family of ubiquitin ligases composed of a common core of components and a variable component called an F-box protein that defines substrate specificity. Distinct SCF complexes, defined by a particular F-box protein, target different substrate proteins for degradation. Although a few have been identified to be involved in important biological pathways, such as the cell division cycle and coordinating cellular responses to changes in environmental conditions, the role of the overwhelming majority of F-box proteins is not clear. Creating inhibitors that will block the in vivo activities of specific SCF ubiquitin ligases may provide identification of substrates of these uncharacterized F-box proteins. Using Saccharomyces cerevisiae as a model system, we demonstrate that overproduction of polypeptides corresponding to the amino terminus of the F-box proteins Cdc4p and Met30p results in specific inhibition of their SCF complexes. Analyses of mutant amino-terminal alleles demonstrate that the interaction of these polypeptides with their full-length counterparts is an important step in the inhibitory process. These results suggest a common means to inhibit specific SCF complexes in vivo.


2008 ◽  
Vol 190 (21) ◽  
pp. 7302-7307 ◽  
Author(s):  
Sanchaita Das ◽  
Elizabeth Stivison ◽  
Ewa Folta-Stogniew ◽  
Donald Oliver

ABSTRACT The SecA nanomotor promotes protein translocation in eubacteria by binding both protein cargo and the protein-conducting channel and by undergoing ATP-driven conformation cycles that drive this process. There are conflicting reports about whether SecA functions as a monomer or dimer during this dynamic process. Here we reexamined the roles of the amino and carboxyl termini of SecA in promoting its dimerization and functional state by examining three secA mutants and the corresponding proteins: SecAΔ8 lacking residues 2 to 8, SecAΔ11 lacking residues 2 to 11, and SecAΔ11/N95 lacking both residues 2 to 11 and the carboxyl-terminal 70 residues. We demonstrated that whether SecAΔ11 or SecAΔ11/N95 was functional for promoting cell growth depended solely on the vivo level of the protein, which appeared to govern residual dimerization. All three SecA mutant proteins were defective for promoting cell growth unless they were highly overproduced. Cell fractionation revealed that SecAΔ11 and SecAΔ11/N95 were proficient in membrane association, although the formation of integral membrane SecA was reduced. The presence of a modestly higher level of SecAΔ11/N95 in the membrane and the ability of this protein to form dimers, as detected by chemical cross-linking, were consistent with the higher level of secA expression and better growth of the SecAΔ11/N95 mutant than of the SecAΔ11 mutant. Biochemical studies showed that SecAΔ11 and SecAΔ11/N95 had identical dimerization defects, while SecAΔ8 was intermediate between these proteins and wild-type SecA in terms of dimer formation. Furthermore, both SecAΔ11 and SecAΔ11/N95 were equally defective in translocation ATPase specific activity. Our studies showed that the nonessential carboxyl-terminal 70 residues of SecA play no role in its dimerization, while increasing the truncation of the amino-terminal region of SecA from 8 to 11 residues results in increased defects in SecA dimerization and poor in vivo function unless the protein is highly overexpressed. They also clarified a number of conflicting previous reports and support the essential nature of the SecA dimer.


1987 ◽  
Vol 252 (1) ◽  
pp. E147-E151
Author(s):  
K. D. Bloch ◽  
J. B. Zisfein ◽  
M. N. Margolies ◽  
C. J. Homcy ◽  
J. G. Seidman ◽  
...  

Proatrial natriuretic factor (proANF), the 126-amino acid precursor of ANF, is the major storage form in mammalian atria. In contrast, two ANF peptides containing the 28- and 24-carboxyterminal residues of proANF have been isolated from rat plasma. Whether the cleavage of proANF in vivo to these ANF peptides occurs during or after its release into the circulation has not been determined. The latter possibility was suggested by our previous study where, by using a cultured rat cardiocyte preparation, we demonstrated that proANF is secreted intact into the culture medium. We now report that serum, but not plasma, contains a protease that specifically cleaves the 17-kdalton proANF to a 14-kdalton amino-terminal peptide and the carboxyterminal 3-kdalton circulating forms of ANF. The role of this proANF-cleaving enzyme in the generation of the biologically active ANF peptides remains to be defined. Its isolation and characterization should provide insights into its site of production and whether in vivo it is involved in the processing of circulating proANF.


Microbiology ◽  
2006 ◽  
Vol 152 (8) ◽  
pp. 2265-2272 ◽  
Author(s):  
Veeranki Venkata Dasu ◽  
Yuji Nakada ◽  
Mayumi Ohnishi-Kameyama ◽  
Keitarou Kimura ◽  
Yoshifumi Itoh

Pseudomonas aeruginosa PAO1 has two possible catabolic pathways of spermidine and spermine; one includes the spuA and spuB products with unknown functions and the other involves spermidine dehydrogenase (SpdH; EC 1.5.99.6) encoded by an unknown gene. The properties of SpdH in P. aeruginosa PAO1 were characterized and the corresponding spdH gene in this strain identified. The deduced SpdH (620 residues, calculated M r of 68 861) had a signal sequence of 28 amino acids at the amino terminal and a potential transmembrane segment between residues 76 and 92, in accordance with membrane location of the enzyme. Purified SpdH oxidatively cleaved spermidine into 1,3-diaminopropane and 4-aminobutyraldehyde with a specific activity of 37 units (mg protein)−1 and a K m value of 36 μM. The enzyme also hydrolysed spermine into spermidine and 3-aminopropanaldehyde with a specific activity of 25 units (mg protein)−1 and a K m of 18 μM. Knockout of spdH had no apparent effect on the utilization of both polyamines, suggesting that this gene is minimally involved in polyamine catabolism. However, when spdH was fused to the polyamine-inducible promoter of spuA, it fully restored the ability of a spuA mutant to utilize spermidine. It is concluded that SpdH can perform a catabolic role in vivo, but P. aeruginosa PAO1 does not produce sufficient amounts of the enzyme to execute this function.


2004 ◽  
Vol 24 (17) ◽  
pp. 7548-7558 ◽  
Author(s):  
Akihira Ohtoshi ◽  
Richard R. Behringer

ABSTRACT Dmbx1 encodes a paired-like homeodomain protein that is expressed in developing neural tissues during mouse embryogenesis. To elucidate the in vivo role of Dmbx1, we generated two Dmbx1 mutant alleles. Dmbx1− lacks the homeobox and Dmbx1z is an insertion of a lacZ reporter gene. Dmbx1z appears to be a faithful reporter of Dmbx1 expression during embryogenesis and after birth. Dmbx1-lacZ expression was detected in the superior colliculus, cerebellar nuclei, and subpopulations of the medulla oblongata and spinal cord. Some Dmbx1 homozygous mutant mice died during the neonatal period, while others survived to adulthood; however, their growth was impaired. Both heterozygous and homozygous mutant offspring from Dmbx1 homozygous mutant females exhibited a low survival rate and poor growth. However, even wild-type pups fostered onto Dmbx1 homozygous mutant females grew poorly, suggesting a Dmbx1-dependent nursing defect. Dmbx1 mutant mice had an aberrant Dmbx1-lacZ expression pattern in the nervous system, indicating that they had abnormal brain development. These results demonstrate that Dmbx1 is required for postnatal survival, growth, and brain development.


2008 ◽  
Vol 22 (3) ◽  
pp. 665-675 ◽  
Author(s):  
Pia Rantakari ◽  
Leena Strauss ◽  
Riku Kiviranta ◽  
Heidi Lagerbohm ◽  
Jenni Paviala ◽  
...  

Abstract Hydroxysteroid (17-β) dehydrogenase 2 (HSD17B2) is a member of aldo-keto reductase superfamily, known to catalyze the inactivation of 17β-hydroxysteroids to less active 17-keto forms and catalyze the conversion of 20α-hydroxyprogesterone to progesterone in vitro. To examine the role of HSD17B2 in vivo, we generated mice deficient in Hsd17b2 [HSD17B2 knockout (KO)] by a targeted gene disruption in embryonic stem cells. From the homozygous mice carrying the disrupted Hsd17b2, 70% showed embryonic lethality appearing at the age of embryonic d 11.5 onward. The embryonic lethality was associated with reduced placental size measured at embryonic d 17.5. The HSD17B2KO mice placentas presented with structural abnormalities in all three major layers: the decidua, spongiotrophoblast, and labyrinth. Most notable was the disruption of the spongiotrophoblast and labyrinthine layers, together with liquid-filled cysts in the junctional region and the basal layer. Treatments with an antiestrogen or progesterone did not rescue the embryonic lethality or the placenta defect in the homozygous mice. In hybrid background used, 24% of HSD17B2KO mice survived through the fetal period but were born growth retarded and displayed a phenotype in the brain with enlargement of ventricles, abnormal laminar organization, and increased cellular density in the cortex. Furthermore, the HSD17B2KO mice had unilateral renal degeneration, the affected kidney frequently appearing as a fluid-filled sac. Our results provide evidence for a role for HSD17B2 enzyme in the cellular organization of the mouse placenta.


Author(s):  
Marie-Sophie Nguyen-Tu ◽  
Aida Martinez-Sanchez ◽  
Isabelle Leclerc ◽  
Guy A. Rutter ◽  
Gabriela da Silva Xavier

AbstractTranscription factor 7-like 2 (TCF7L2) is a downstream effector of the Wnt/beta-catenin signalling pathway and its expression is critical for adipocyte development. The precise role of TCF7L2 in glucose and lipid metabolism in adult adipocytes remains to be defined. Here, we aim to investigate how changes in TCF7L2 expression in mature adipocytes affect glucose homeostasis. Tcf7l2 was selectively ablated from mature adipocytes in C57BL/6J mice using an adiponectin promoter-driven Cre recombinase to recombine alleles floxed at exon 1 of the Tcf7l2 gene. Mice lacking Tcf7l2 in mature adipocytes displayed normal body weight. Male mice exhibited normal glucose homeostasis at eight weeks of age. Male heterozygote knockout mice (aTCF7L2het) exhibited impaired glucose tolerance (AUC increased 1.14 ± 0.04 -fold, p=0.03), as assessed by intraperitoneal glucose tolerance test, and changes in fat mass at 16 weeks (increased by 1.4 ± 0.09-fold, p=0.007). Homozygote knockout mice exhibited impaired oral glucose tolerance at 16 weeks of age (AUC increased 2.15 ± 0.15-fold, p=0.0001). Islets of Langerhans exhibited impaired glucose-stimulated insulin secretion in vitro (decreased 0.54 ± 0.13-fold aTCF7L2KO vs control, p=0.02), but no changes in in vivo glucose-stimulated insulin secretion. Female mice in which one or two alleles of the Tcf7l2 gene was knocked out in adipocytes displayed no changes in glucose tolerance, insulin sensitivity or insulin secretion. Plasma levels of glucagon-like peptide-1 and gastric inhibitory polypeptide were lowered in knockout mice (decreased 0.57 ± 0.03-fold and 0.41 ± 0.12-fold, p=0.04 and p=0.002, respectively), whilst plasma free fatty acids and Fatty Acid Binding Protein 4 circulating levels were increased by 1.27 ± 0.07 and 1.78 ± 0.32-fold, respectively (p=0.05 and p=0.03). Mice with biallelic Tcf7l2 deletion exposed to high fat diet for 9 weeks exhibited impaired glucose tolerance (p=0.003 at 15 min after glucose injection) which was associated with reduced in vivo glucose-stimulated insulin secretion (decreased 0.51 ± 0.03-fold, p=0.02). Thus, our data indicate that loss of Tcf7l2 gene expression in adipocytes leads to impairments on metabolic responses which are dependent on gender, age and nutritional status. Our findings further illuminate the role of TCF7L2 in the maintenance of glucose homeostasis.


Sign in / Sign up

Export Citation Format

Share Document