marine compounds
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 33)

H-INDEX

19
(FIVE YEARS 2)

Author(s):  
Mohammad Reza Miri ◽  
Afshin Zare ◽  
Jamileh Saberzadeh ◽  
Neda Baghban ◽  
Iraj Nabipour ◽  
...  
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Abdulwahab Alamri ◽  
Abdur Rauf ◽  
Anees Ahmed Khalil ◽  
Adel Alghamdi ◽  
Ahmed Alafnan ◽  
...  

Presently, the majority of breast tumors are estrogen receptor (ER) positive. Breast cancer (BC) is defined by uncontrolled cell proliferation (CP) in breast tissue. BCs are caused by the overexpression of genes that promote CP in breast cells. The discovery of effective inhibitors is an excellent chemopreventive method. Our in silico approach analysis offers a pharmacoinformatics methodology for identifying lead molecules targeting cochaperone HSP90 and the epidermal growth factor receptors (EGFR) and human epidermal growth factor receptor 2 (HER2)/neu receptor. BC has been associated with the high expression of these targets. The use of drug-likeness filters aided in determining the therapeutic properties of possible lead compounds. In this study, docking-based virtual screening (VS) was performed. Database of about 450 cancer marine compounds was used. The X-ray-assisted structure of ERα with 4-OHT (PDB code: 3ERT) was chosen for 4-OHT. A docking-based virtual screening was performed on the dataset supplied using the molecular operating environment (MOE) dock application. The binding energy (BE) and explanation of the protein inhibitor interaction (PII) are crucial findings for future both in terms of dry or wet lab research. The GBVI/WAS binding-free energy assessment (in kcal/mol) scores were used to grade the compounds. Compounds with a BE of less than -9.500 kcal/mol were deemed to be the most effective inhibitors. For further analysis, the top seven structurally diverse scaffolds were selected. Seven marine compounds exhibited the best docking score, which validates them to be potent anti-BC compounds. These compounds’ bioactive potential and prospective drug-likeness profile make them promising leads for further experimental research.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3100
Author(s):  
Eva Quitério ◽  
Cristina Soares ◽  
Ricardo Ferraz ◽  
Cristina Delerue-Matos ◽  
Clara Grosso

Seaweeds represent a rich source of biologically active compounds with several applications, especially in the food, cosmetics, and medical fields. The beneficial effects of marine compounds on health have been increasingly explored, making them an excellent choice for the design of functional foods. When studying marine compounds, several aspects must be considered: extraction, identification and quantification methods, purification steps, and processes to increase their stability. Advanced green techniques have been used to extract these valuable compounds, and chromatographic methods have been developed to identify and quantify them. However, apart from the beneficial effects of seaweeds for human health, these natural sources of bioactive compounds can also accumulate undesirable toxic elements with potential health risks. Applying purification techniques of extracts from seaweeds may mitigate the amount of excessive toxic components, ensuring healthy and safer products for commercialization. Furthermore, limitations such as stability and bioavailability problems, chemical degradation reactions during storage, and sensitivity to oxidation and photo-oxidation, need to be overcome using, for example, nanoencapsulation techniques. Here we summarize recent advances in all steps of marine products identification and purification and highlight selected human applications, including food and feed applications, cosmetic, human health, and fertilizers, among others.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1390
Author(s):  
Emiliano Cappello ◽  
Paola Nieri

In the last decades Blue Growth policy in european and non-european countries produced a great impulse in applied marine sciences, comprehending the research of new bioactive molecules in marine organisms. These organisms are a great source of natural compounds with unique features resulting from the huge variability of marine habitats and species living in them. Most of the marine compounds in use and in clinical trials are drugs for cancer therapy and many of them are conjugated to antibody to form antibody-drug conjugates (ADCs). Severe pain, viral infections, hypertriglyceridemia, obesity, Alzheimer’s and other CNS diseases are further target conditions for these pharmaceuticals. This review summarizes the state-of-the-art marine drugs focusing on the most successful results in the fast expanding field of marine pharmacology.


Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 694
Author(s):  
Valentin A. Stonik ◽  
Natalia V. Ivanchina

Marine natural compounds, containing rare and enzymatically-modified monosaccharide residues [...]


Marine Drugs ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. 558
Author(s):  
Sergey A. Dyshlovoy

The natural compounds derived from marine organisms often exhibit unique chemical structures and potent biological activities. Cancer-preventive activity is one of the rather new activities that has emerged and been extensively studied over the last decades. This review summarizes the recent updates on the marine chemopreventive compounds covering the relevant literature published in 2013–2021 and following the previous comprehensive review by Stonik and Fedorov (Marine Drugs 2014, 12, 636–671). In the current article, only the molecules having an effect on malignant transformation (or related pathway and molecules), cancer stem cells, or carcinogen-induced in vivo tumor development were considered to be “true” cancer-preventive compounds and were, therefore, reviewed. Additionally, particular attention has been given to the molecular mechanisms of chemoprevention, executed by the reported marine compounds.


2021 ◽  
Vol 8 (9) ◽  
pp. 210974
Author(s):  
Son Tung Ngo ◽  
Khanh B. Vu ◽  
Minh Quan Pham ◽  
Nguyen Minh Tam ◽  
Phuong-Thao Tran

The winged-helix domain of the methyl methanesulfonate and ultraviolet-sensitive 81 ( w MUS81) is a potential cancer drug target. In this context, marine fungi compounds were indicated to be able to prevent w MUS81 structure via atomistic simulations. Eight compounds such as D197 ( Tryptoquivaline U ), D220 ( Epiremisporine B ), D67 ( Aspergiolide A ), D153 ( Preussomerin G ), D547 ( 12,13-dihydroxyfumitremorgin C ), D152 ( Preussomerin K ), D20 ( Marinopyrrole B ) and D559 ( Fumuquinazoline K ) were indicated that they are able to prevent the conformation of w MUS81 via forming a strong binding affinity to the enzyme via perturbation approach. The electrostatic interaction is the dominant factor in the binding process of ligands to w MUS81. The residues Trp55, Arg59, Leu62, His63 and Arg69 were found to frequently form non-bonded contacts and hydrogen bonds to inhibitors. Moreover, the influence of the ligand D197 , which formed the lowest binding free energy to w MUS81, on the structural change of enzyme was investigated using replica exchange molecular dynamics simulations. The obtained results indicated that D197 , which forms a strong binding affinity, can modify the structure of w MUS81. Overall, the marine compounds probably inhibit w MUS81 due to forming a strong binding affinity to the enzyme as well as altering the enzymic conformation.


Marine Drugs ◽  
2021 ◽  
Vol 19 (9) ◽  
pp. 488
Author(s):  
Lichuan Wu ◽  
Ke Ye ◽  
Sheng Jiang ◽  
Guangbiao Zhou

Worldwide, 19.3 million new cancer cases and almost 10.0 million cancer deaths occur each year. Recently, much attention has been paid to the ocean, the largest biosphere of the earth that harbors a great many different organisms and natural products, to identify novel drugs and drug candidates to fight against malignant neoplasms. The marine compounds show potent anticancer activity in vitro and in vivo, and relatively few drugs have been approved by the U.S. Food and Drug Administration for the treatment of metastatic malignant lymphoma, breast cancer, or Hodgkin′s disease. This review provides a summary of the anticancer effects and mechanisms of action of selected marine compounds, including cytarabine, eribulin, marizomib, plitidepsin, trabectedin, zalypsis, adcetris, and OKI-179. The future development of anticancer marine drugs requires innovative biochemical biology approaches and introduction of novel therapeutic targets, as well as efficient isolation and synthesis of marine-derived natural compounds and derivatives.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1128
Author(s):  
Alberto Fernández-Medarde ◽  
Rocío Fuentes-Mateos ◽  
Rósula García-Navas ◽  
Andrea Juan ◽  
José María Sánchez-López ◽  
...  

Recent breakthroughs have reignited interest in RAS GEFs as direct therapeutic targets. To search for new inhibitors of SOS GEF activity, a repository of known/approved compounds (NIH-NACTS) and a library of new marine compounds (Biomar Microbial Technologies) were screened by means of in vitro RAS-GEF assays using purified, bacterially expressed SOS and RAS constructs. Interestingly, all inhibitors identified in our screenings (two per library) shared related chemical structures belonging to the anthraquinone family of compounds. All our anthraquinone SOS inhibitors were active against the three canonical RAS isoforms when tested in our SOS GEF assays, inhibited RAS activation in mouse embryonic fibroblasts, and were also able to inhibit the growth of different cancer cell lines harboring WT or mutant RAS genes. In contrast to the commercially available anthraquinone inhibitors, our new marine anthraquinone inhibitors did not show in vivo cardiotoxicity, thus providing a lead for future discovery of stronger, clinically useful anthraquinone SOS GEF blockers.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 886
Author(s):  
Rodion Khotimchenko ◽  
Igor Bryukhovetskiy ◽  
Maksim Khotimchenko ◽  
Yuri Khotimchenko

The search for new chemical compounds with antitumor pharmacological activity is a necessary process for creating more effective drugs for each specific malignancy type. This review presents the outcomes of screening studies of natural compounds with high anti-glioma activity. Despite significant advances in cancer therapy, there are still some tumors currently considered completely incurable including brain gliomas. This review covers the main problems of the glioma chemotherapy including drug resistance, side effects of common anti-glioma drugs, and genetic diversity of brain tumors. The main emphasis is made on the characterization of natural compounds isolated from marine organisms because taxonomic diversity of organisms in seawaters significantly exceeds that of terrestrial species. Thus, we should expect greater chemical diversity of marine compounds and greater likelihood of finding effective molecules with antiglioma activity. The review covers at least 15 classes of organic compounds with their chemical formulas provided as well as semi-inhibitory concentrations, mechanisms of action, and pharmacokinetic profiles. In conclusion, the analysis of the taxonomic diversity of marine species containing bioactives with antiglioma activity is performed noting cytotoxicity indicators and to the tumor cells in comparison with similar indicators of antitumor agents approved for clinical use as antiglioblastoma chemotherapeutics.


Sign in / Sign up

Export Citation Format

Share Document