scholarly journals Geology of the Frontino-Morrogacho Gold Mining District and Metallogeny of the El Cerro Igneous Complex

2021 ◽  
Vol 48 (1) ◽  
pp. 7-47
Author(s):  
Felipe Arrubla Arango ◽  
Sergio Esteban Silva Sánchez

The Frontino-Morrogacho gold district is located on the western flank of the Western Cordillera, NW of Antioquia Province. Gold mineralizations in the area are spatially and genetically associated with the cooling  of three mid- to late-Miocene age intrusive centers in the form of stocks and dikes (12-9 Ma): Cerro Frontino,  La Horqueta and Morrogacho (El Cerro Igneous Complex). These composite magmatic pulses, with  ultramafic to intermediate compositions, vary into diorite-, gabbro- and monzonitic-bearing phases.  Mineralization in the complex is present as several structurally controlled fault veins, shear-related veins,  sheeted quartz extension veins and quartz-carbonate tabular extension veins, with the development of  swarms and nests of veins-veinlets, breccias and stockworks. Structures range from centimeter-wide  individual veinlets to several meter-wide swarms of veins developed within broad mineralized structural  corridors, with a metallic signature that consists of Au + Ag + Cu + Zn + Pb + As (± Te ± Bi ± Sb ± Hg ± W)  assemblages. Veins are composed of multiple stages of mineralization, and the formation of these  structures is enhanced by the presence of a local regime of extension and E-trending structures, including  evidence of faults and shear zones with right-lateral displacement, which are likely involved in pluton  emplacement and cooling. The ore mineralogy is composed of pyrrhotite, pyrite, chalcopyrite, sphalerite,  galena and arsenopyrite assemblages formed in two or more mineralization stages, with complex Bi, Te, Sb  and Hg mineral specimens associated with Au and Ag. Mineralized structures of the district present a preferential E-strike with dominant vertical to subvertical and occasional subhorizontal S-dips and secondary N- and NW-strikes that are steep to vertically E-dipping. The Frontino-Morrogacho Gold district presents characteristics related to the architecture, mineralogy and  alteration of reduced (ilmenite-series) intrusion-related gold systems but is genetically associated with a  parental oxidized magma source. The gold content is associated with three different families involving electrum, tellurides and alloys: gold rich (66 to 78% Au, 22 to 34% Ag), average (50 to 60% Au, 40 to 50% Ag)  and silver rich (32 to 40% Au, 60 to 68% Ag). The formation of these bodies is associated with an N-S  magmatic-metallogenic trend of Au-Ag-Cu deposits, which extend for more than 300 km along the Western  Cordillera of Colombia. Similar plutonic suites span from the south of Chocó Province to the north of Antioquia Province, which indicates that the Frontino-Farallones-Botón arc can be proposed as an individual  metallogenic belt.

1992 ◽  
Vol 29 (3) ◽  
pp. 388-417 ◽  
Author(s):  
Andreas G. Mueller

The Norseman mining district in the Archean Yilgarn Block, Western Australia, has produced 140 t of gold and about 90 t of silver from 11.24 × 106 t of ore. The district is located within a metamorphic terrane of mafic and minor ultramafic greenstones, intruded by granite cupolas and swarms of porphyry dykes. The orebodies consist of laminated quartz veins, controlled by narrow (0.5–5 m) reverse shear zones that, in general, follow the contacts of metapyroxenite or porphyry dykes. Petrological studies of four shear zones, exposed on the Regent shaft 14 level, Ajax shaft 10 level, and in the stope above the North Royal shaft 5 level, show that the host rocks were metamorphosed to hornblende–plagioclase amphibolites and actinolite–chlorite rocks at temperatures of 500–550 °C prior to mineralization.At the localities studied, intense wall-rock replacement and low-grade (0.5 g/t) gold mineralization are confined to ductile or brittle–ductile shear structures. Alteration is similar in both ultramafic and mafic greenstones, and consists of an inner zone of biotite–quartz–calcite–plagioclase rock with minor actinolitic hornblende and quartz–calcite–actinolite veinlets, and an outer zone, locally developed, of chlorite–calcite–quartz rock. At an estimated pressure of 3 kbar (300 MPa), fluid temperatures during wall-rock alteration are constrained by the hydrothermal mineral assemblages to 480 ± 30 °C in two shear zones on the Regent shaft 14 level, and to 450 ± 20 °C in one shear zone in the North Royal shaft 5 level stope. The mole fraction of CO2 of the fluids is estimated at [Formula: see text], and the sulphur fugacity at 10−6 bar (10−1 kPa) (at 450 °C), based on the assemblage pyrrhotite + pyrite ± arsenopyrite. The development of an outer chloritic alteration zone at North Royal is related to the lower fluid temperature at this locality.High-grade (up to 75 g/t Au, 283 g/t Ag) veins formed within three of the shear zones studied at fluid temperatures of 400 °C and less, by the successive accretion of quartz laminae, separated by films of retrograde chlorite and sericite. The assemblage of ore minerals in the veins differs from that in the altered wall rocks, and includes disseminated galena, Pb–Bi–Ag tellurides, and native gold, which coprecipitated with the quartz. The orebodies at Norseman show affinities to Phanerozoic and Archean gold skarn deposits.


2017 ◽  
Vol 155 (2) ◽  
pp. 536-548 ◽  
Author(s):  
STEFANO CATALANO ◽  
FRANCESCO PAVANO ◽  
GINO ROMAGNOLI ◽  
GIUSEPPE TORTORICI ◽  
LUIGI TORTORICI

AbstractWe here propose a new kinematic picture of central Sicily based on the results of detailed field mapping of the region, combined with structural analyses and the interpretation of the available literature subsurface data. Our study focused on the tectonic boundary of a structural depression, the Caltanissetta Trough, which is now filled with allochthonous terrains resting on the deep-seated inverted African palaeomargin units. Our data refer to the tectonosedimentary evolution of the thrust-top basins, from Late Tortonian to Quaternary times. The study points out the occurrence of regional E–W-oriented dextral shear zones, cutting the NE-oriented trends of the thrust belt. This new evidence would confirm the major role of the E–W trend in the tectonic inversion of the external portions of the Africa palaeomargin in Sicily. Our results could contribute to a better understanding of the location in Sicily of the tectonic lineaments accommodating the hundreds of kilometres of lateral displacement, caused by the Late Miocene–Quaternary Tyrrhenian Basin opening to the north of the island.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Carlos E. Ganade ◽  
Roberto F. Weinberg ◽  
Fabricio A. Caxito ◽  
Leonardo B. L. Lopes ◽  
Lucas R. Tesser ◽  
...  

AbstractDispersion and deformation of cratonic fragments within orogens require weakening of the craton margins in a process of decratonization. The orogenic Borborema Province, in NE Brazil, is one of several Brasiliano/Pan-African late Neoproterozoic orogens that led to the amalgamation of Gondwana. A common feature of these orogens is that a period of extension and opening of narrow oceans preceded inversion and collision. For the case of the Borborema Province, the São Francisco Craton was pulled away from its other half, the Benino-Nigerian Shield, during an intermittent extension event between 1.0–0.92 and 0.9–0.82 Ga. This was followed by inversion of an embryonic and confined oceanic basin at ca. 0.60 Ga and transpressional orogeny from ca. 0.59 Ga onwards. Here we investigate the boundary region between the north São Francisco Craton and the Borborema Province and demonstrate how cratonic blocks became physically involved in the orogeny. We combine these results with a wide compilation of U–Pb and Nd-isotopic model ages to show that the Borborema Province consists of up to 65% of strongly sheared ancient rocks affiliated with the São Francisco/Benino-Nigerian Craton, separated by major transcurrent shear zones, with only ≈ 15% addition of juvenile material during the Neoproterozoic orogeny. This evolution is repeated across a number of Brasiliano/Pan-African orogens, with significant local variations, and indicate that extension weakened cratonic regions in a process of decratonization that prepared them for involvement in the orogenies, that led to the amalgamation of Gondwana.


1932 ◽  
Vol 69 (5) ◽  
pp. 209-233 ◽  
Author(s):  
G. D. Osborne

THE Carlingford-Barnave district falls within the boundaries of Sheet 71 of the Ordnance Survey of Ireland, and forms part of a broad promontory lying between Carlingford Lough on the north-east and Dundalk Bay on the south-west. The greater part of this promontory is made up of an igneous complex of Tertiary age which has invaded the Silurian slates and quartzites and the Carboniferous Limestone Series. This complex has not yet been investigated in detail, but for the purposes of the present paper certain references to it are necessary, and these are made below. The prevalence of hybrid-relations and contamination-effects between the basic and acid igneous rocks of the region is a very marked feature, and because of this it has been difficult at times to decide which types have been responsible for the various stages of the metamorphism.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Quanlin Hou ◽  
Hongyuan Zhang ◽  
Qing Liu ◽  
Jun Li ◽  
Yudong Wu

A previous study of the Dabie area has been supposed that a strong extensional event happened between the Yangtze and North China blocks. The entire extensional system is divided into the Northern Dabie metamorphic complex belt and the south extensional tectonic System according to geological and geochemical characteristics in our study. The Xiaotian-Mozitan shear zone in the north boundary of the north system is a thrust detachment, showing upper block sliding to the NNE, with a displacement of more than 56 km. However, in the south system, the shearing direction along the Shuihou-Wuhe and Taihu-Mamiao shear zones is tending towards SSE, whereas that along the Susong-Qingshuihe shear zone tending towards SW, with a displacement of about 12 km. Flinn index results of both the north and south extensional systems indicate that there is a shear mechanism transition from pure to simple, implying that the extensional event in the south tectonic system could be related to a magma intrusion in the Northern Dabie metamorphic complex belt. Two 40Ar-39Ar ages of mylonite rocks in the above mentioned shear zones yielded, separately, ~190 Ma and ~124 Ma, referring to a cooling age of ultrahigh-pressure rocks and an extensional era later.


2014 ◽  
Vol 86 (3) ◽  
pp. 1101-1113 ◽  
Author(s):  
FABRÍCIO A. CAXITO ◽  
ALEXANDRE UHLEIN ◽  
LUIZ F.G. MORALES ◽  
MARCOS EGYDIO-SILVA ◽  
JULIO C.D. SANGLARD ◽  
...  

The Rio Preto fold belt borders the northwestern São Francisco craton and shows an exquisite kilometric doubly-vergent asymmetric fan structure, of polyphasic structural evolution attributed exclusively to the Brasiliano Orogeny (∼600-540 Ma). The fold belt can be subdivided into three structural compartments: The Northern and Southern compartments showing a general NE-SW trend, separated by the Central Compartment which shows a roughly E-W trend. The change of dip of S2, a tight crenulation foliation which is the main structure of the fold belt, between the three compartments, characterizes the fan structure. The Central Compartment is characterized by sub-vertical mylonitic quartzites, which materialize a system of low-T strike slip shear zones (Malhadinha – Rio Preto Shear Zone) crosscutting the central portion of the fold belt. In comparison to published analog models, we consider that the unique structure of the Rio Preto fold belt was generated by the oblique, dextral-sense interaction between the Cristalândia do Piauí block to the north and the São Francisco craton to the south.


2021 ◽  
Author(s):  
A. Castro ◽  
et al.

<div>Geochemical and geochronologic data.<br></div><div><br></div><div><br></div><div><br></div><div><br></div><div><br></div><div><br></div><div><br></div>


1979 ◽  
Vol 89 ◽  
pp. 9-18
Author(s):  
D Bridgwater ◽  
J.S Myers

The Nagssugtoqidian mobile belt is a 240 km wide zone of deformation and plutonic activity which cuts across the Archaean craton of East Greenland. The belt was established 2600 m.y. ago by the formation of vertical E-W shear zones and the syntectonic intrusion of basic dykes. Tectonic activity along the E-W shear zones was followed by the emplacement of tonalitic intrusions, the Blokken gneisses, 2350 m.y. ago in the central parts of the mobile belt. The emplacement of the Blokken gneisses was accompanied and followed by further emplacement of basic dykes. These are synplutonic in the centre of the mobile belt but are emplaced into more rigid crust in the marginal areas of the belt and in the Archaean craton to the north and south. During a second major tectonic and thermal episode circa 1900 m.y. ago, the region was deformed by thrusting from the north. In the southem part of the mobile belt the earlier steep shear zones are cut by shear zones dipping gently northwards in which rocks are downgraded to greenschist facies. The grade of metamorphism increases northwards and shear zones are replaced by open folds with axial surfaces which dip gently northwards. The increasing ductility in the centre of and northem part of the belt is associated with the intrusion of charnockitic plutons and their granulite facies aureoles. Regional uplift occurred before the intrusion of high level post-tectonic plutons of diorite and granite 1550 m.y. ago.


2010 ◽  
Vol 181 (3) ◽  
pp. 227-241 ◽  
Author(s):  
Dominique Gasquet ◽  
Jean-Michel Bertrand ◽  
Jean-Louis Paquette ◽  
Jérémie Lehmann ◽  
Gueorgui Ratzov ◽  
...  

Abstract U-Pb and Th-Pb dating of monazite from hydrothermal quartz veins (“Alpine veins”) from the Lauzière massif (North Belledonne) together with Ar/Ar ages of adularias from the same veins constrain the age of the last tectono-metamorphic events that affected the External Crystalline Massifs (ECM). Ages obtained are surprisingly young. The study of the structural context of the veins combined with our chronological data, allow us to propose a tectonic scenario of the northern ECM for the 15-5 Ma period, which was poorly documented so far. The quartz veins are of two types: (i) the oldest are poorly mineralized (chlorite and epidote), flat-lying veins. The quartz fibres (= extension direction) are near vertical and seem to be associated with a subvertical dissolution schistosity superimposed upon an early Alpine deformation underlined by “mini-biotite”. They bear a sub-horizontal stretching lineation; (ii) the youngest veins are very rich in various minerals (anatase, rutile, phénacite, meneghinite, beryl, synchysite, ….). They are almost vertical. Their “en echelon” geometry as well as the horizontal attitude of their quartz fibres show a dextral strike-slip regime. Two groups of Th-Pb ages have been obtained: 11 to 10 Ma and 7 to 5 Ma. They were obtained from the most recent veins (vertical veins) sampled in different areas of the massif. The ca. 10 Ma ages are related to veins in the Lauzière granite and its metamorphic country-rocks at about 2 km from the eastern contact of the massif, while the ages of ca. 5 Ma correspond to veins occurring in mylonites along this contact. Adularias provided Ar/Ar ages at ca. 7 Ma. By contrast, a monazite from a vein of the Pelvoux massif (Plan du Lac) yielded a Th-Pb age of 17.6 Ma but in a different structural setting. Except fission track ages, there are very little ages of this range published in the recent literature on the Alps. The latter concern always gold mineralized veins (NE Mont Blanc and SW Lepontine dome). The last compressive tectonic regime dated between 15 and 12 Ma is coeval with (i) the late “Roselend thrust” event, which is recorded in the Mont Blanc by shear-zones with vertical lineation, (ii) the last movements in the basal mylonites of the Swiss Nappes, (iii) the horizontal Alpine veins from the Mont Blanc and Belledonne massifs (with vertical quartz fibres), which are similar to the early veins of the Lauzière. On the contrary, the vertical veins of the Lauzière, dated between 11 and 5 Ma, correspond to a dextral strike slip regime. This suggests that most of the strike-slip tectonics along the ECM took place during two stages (ca. 10 Ma and ca. 7-5 Ma) and not only at 18 Ma as had been proposed previously. Our ages are consistent with the late Miocene-Pliocene overlap of the Digne thrust to the South and to part of the normal movement along the Simplon fault to the North. Thus, all the external crystalline massifs were tectonically active during the late Miocene. This suggests that tectonic events in the external alpine belt may have contributed to some extent to the geodynamical causes of the Messinian crisis.


Sign in / Sign up

Export Citation Format

Share Document