biopolymer composites
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 49)

H-INDEX

15
(FIVE YEARS 6)

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3194
Author(s):  
Monika Furko ◽  
Zsolt E. Horváth ◽  
Judith Mihály ◽  
Katalin Balázsi ◽  
Csaba Balázsi

Calcium phosphate (CaP)-based ceramic–biopolymer composites can be regarded as innovative bioresorbable coatings for load-bearing implants that can promote the osseointegration process. The carbonated hydroxyapatite (cHAp) phase is the most suitable CaP form, since it has the highest similarity to the mineral phase in human bones. In this paper, we investigated the effect of wet chemical preparation parameters on the formation of different CaP phases and compared their morphological and structural characteristics. The results revealed that the shape and crystallinity of CaP particles were strongly dependent on the post-treatment methods, such as heat or alkaline treatment of as-precipitated powders. In the next step, the optimised cHAp particles have been embedded into two types of biopolymers, such as polyvinyl pyrrolidone (PVP) and cellulose acetate (CA). The pure polymer fibres and the cHAp–biopolymer composites were produced using a novel electrospinning technique. The SEM images showed the differences between the morphology and network of CA and PVP fibres as well as proved the successful attachment of cHAp particles. In both cases, the fibres were partially covered with cHAp clusters. The SEM measurements on samples after one week of immersion in PBS solution evidenced the biodegradability of the cHAp–biopolymer composites.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3510
Author(s):  
Kirill Cherednichenko ◽  
Dmitry Kopitsyn ◽  
Svetlana Batasheva ◽  
Rawil Fakhrullin

Halloysite is a tubular clay nanomaterial of the kaolin group with a characteristic feature of oppositely charged outer and inner surfaces, allowing its selective spatial modification. The natural origin and specific properties of halloysite make it a potent material for inclusion in biopolymer composites with polysaccharides, nucleic acids and proteins. The applications of halloysite/biopolymer composites range from drug delivery and tissue engineering to food packaging and the creation of stable enzyme-based catalysts. Another important application field for the halloysite complexes with biopolymers is surface coatings resistant to formation of microbial biofilms (elaborated communities of various microorganisms attached to biotic or abiotic surfaces and embedded in an extracellular polymeric matrix). Within biofilms, the microorganisms are protected from the action of antibiotics, engendering the problem of hard-to-treat recurrent infectious diseases. The clay/biopolymer composites can be characterized by a number of methods, including dynamic light scattering, thermo gravimetric analysis, Fourier-transform infrared spectroscopy as well as a range of microscopic techniques. However, most of the above methods provide general information about a bulk sample. In contrast, the combination of electron microscopy with energy-dispersive X-ray spectroscopy allows assessment of the appearance and composition of biopolymeric coatings on individual nanotubes or the distribution of the nanotubes in biopolymeric matrices. In this review, recent contributions of electron microscopy to the studies of halloysite/biopolymer composites are reviewed along with the challenges and perspectives in the field.


Author(s):  
Irina Vasilenko ◽  
Vladislav Metelin ◽  
Nataliya Kil’deeva ◽  
Vasilina Zakharova ◽  
Nina Shikhina

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 592
Author(s):  
Miroslawa Prochon ◽  
Oleksandra Dzeikala

The problem of plastic waste has long been a concern for governments and society. However, huge amounts of plastic are still being released into the oceans and the environment. One possible solution is to replace plastics with materials that are more both biodecomposable and biodegradable. The most environmentally friendly materials are made of natural ingredients found in nature, although not all of them can be called biodegradable. In this study, we set out to create a new composite with functional properties that could replace commonly used disposable packaging. To ensure the competitiveness of our solution, we used inexpensive and readily available components, such as gelatin G HOOCCH2CH2C(R1)NHCOCH2NH2 (where R1 is a continuation of the peptide chain), polyvinyl alcohol PVA CH2CH(OH), and glycerin G HOCH2CH(CH2OH)O. The ingredients used in the research come from natural sources; however, they are chemically processed. Some of them, such as polyvinyl alcohol, for example, are biodegradable. With the appropriate selection of the components, in the casting process, the intermixed components made it possible to produce materials that were characterized by good physicochemical properties, including thermal stability, optical transmission of UV-Vis light, cross-linking density, and mechanical strength. The most favorable parameters of thermal stability were observed in casein-containing gelatine forms. The best cross-linking density was obtained in the case of gelatin–glycerine systems. Composite containing caseins distinguished by the highest resistance to flammability, increased thermal stability, flexibility, and greater hardness compared to other composites.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 619
Author(s):  
Muhammad Umar Aslam Khan ◽  
Saiful Izwan Abd Razak ◽  
Wafa Shamsan Al Arjan ◽  
Samina Nazir ◽  
T. Joseph Sahaya Anand ◽  
...  

The polymeric composite material with desirable features can be gained by selecting suitable biopolymers with selected additives to get polymer-filler interaction. Several parameters can be modified according to the design requirements, such as chemical structure, degradation kinetics, and biopolymer composites’ mechanical properties. The interfacial interactions between the biopolymer and the nanofiller have substantial control over biopolymer composites’ mechanical characteristics. This review focuses on different applications of biopolymeric composites in controlled drug release, tissue engineering, and wound healing with considerable properties. The biopolymeric composite materials are required with advanced and multifunctional properties in the biomedical field and regenerative medicines with a complete analysis of routine biomaterials with enhanced biomedical engineering characteristics. Several studies in the literature on tissue engineering, drug delivery, and wound dressing have been mentioned. These results need to be reviewed for possible development and analysis, which makes an essential study.


Sign in / Sign up

Export Citation Format

Share Document