Kinetics of DNA Repair Under Chronic Irradiation at Low and Medium Dose Rates in Repair Proficient and Repair Compromised Normal Fibroblasts

2021 ◽  
Author(s):  
Elena K. Zaharieva ◽  
Megumi Sasatani ◽  
Kenji Kamiya

We present time and dose dependencies for the formation of 53BP1 and γH2AX DNA damage repair foci after chronic radiation exposure at dose rates of 140, 250 and 450 mGy/day from 3 to 96 h, in human and mouse repair proficient and ATM or DNA-PK deficient repair compromised cell models. We describe the time/dose-response curves using a mathematical equation which contains a linear component for the induction of DNA damage repair foci after irradiation, and an exponential component for their resolution. We show that under conditions of chronic irradiation at low and medium dose rates, the processes of DNA double-strand breaks (DSBs) induction and repair establish an equilibrium, which in repair proficient cells manifests as a plateau-shaped dose-response where the plateau is reached within the first 24 h postirradiation, and its height is proportionate to the radiation dose rate. In contrast, in repair compromised cells, where the rate of repair may be exceeded by the DSB induction rate, DNA damage accumulates with time of exposure and total absorbed dose. In addition, we discuss the biological meaning of the observed dependencies by presenting the frequency of micronuclei formation under the same irradiation conditions as a marker of radiation-induced genomic instability. We believe that the data and analysis presented here shed light on the kinetics of DNA repair under chronic radiation and are useful for future studies in the low-to-medium dose rate range.

2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Katarzyna Wozniak ◽  
Jacek P. Szaflik ◽  
Malgorzata Zaras ◽  
Anna Sklodowska ◽  
Katarzyna Janik-Papis ◽  
...  

Oxidative stress is thought to play a role in the pathogenesis of age-related macular degeneration (AMD). We determined the extent of oxidative DNA damage and the kinetics of its removal as well as the genotypes of the Ser326Cys polymorphism of thehOGG1gene in lymphocytes of 30 wet AMD patients and 30 controls. Oxidative DNA damage induced by hydrogen peroxide and its repair were evaluated by the comet assay and DNA repair enzymes. We observed a higher extent of endogenous oxidative DNA damage and a lower efficacy of its repair in AMD patients as compared with the controls. We did not find any correlation between the extent of DNA damage and efficacy of DNA repair with genotypes of the Ser326Cys polymorphism. The results obtained suggest that oxidative DNA damage and inefficient DNA repair can be associated with AMD and the variability of thehOOG1gene may not contribute to this association.


2019 ◽  
Vol 316 (3) ◽  
pp. C299-C311 ◽  
Author(s):  
Jing Luo ◽  
Zhong-Zhou Si ◽  
Ting Li ◽  
Jie-Qun Li ◽  
Zhong-Qiang Zhang ◽  
...  

Hepatocellular carcinoma (HCC) is known for its high mortality rate worldwide. Based on intensive studies, microRNA (miRNA) expression functions in tumor suppression. Therefore, we aimed to evaluate the contribution of miR-146a-5p to radiosensitivity in HCC through the activation of the DNA damage repair pathway by binding to replication protein A3 (RPA3). First, the limma package of R was performed to differentially analyze HCC expression chip, and regulative miRNA of RPA3 was predicted. Expression of miR-146a-5p, RPA3, and DNA damage repair pathway-related factors in tissues and cells was determined. The effects of radiotherapy on the expression of miR-146a-5p and RPA3 as well as on cell radiosensitivity, proliferation, cell cycle, and apoptosis were also assessed. The results showed that there exists a close correlation between miR-146a and the radiotherapy effect on HCC progression through regulation of RPA3 and the DNA repair pathway. The positive rate of ATM, pCHK2, and Rad51 in HCC tissues was higher when compared with that of the paracancerous tissues. SMMC-7721 and HepG2 cell proliferation were significantly inhibited following 8 Gy 6Mv dose. MiR-146a-5p restrained the expression of RPA3 and promoted the expression of relative genes associated with the DNA repair pathway. In addition, miR-146a-5p overexpression suppresses cell proliferation and enhances radiosensitivity and cell apoptosis in HCC cells. In conclusion, the present study revealed that miR-146a-5p could lead to the restriction of proliferation and the promotion of radiosensitivity and apoptosis in HCC cells through activation of DNA repair pathway and inhibition of RPA3.


Metabolites ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 270
Author(s):  
Heng-Hong Li ◽  
Yun-Tien Lin ◽  
Evagelia C. Laiakis ◽  
Maryam Goudarzi ◽  
Waylon Weber ◽  
...  

Our laboratory and others have use radiation metabolomics to assess responses in order to develop biomarkers reflecting exposure and level of injury. To expand the types of exposure and compare to previously published results, metabolomic analysis has been carried out using serum samples from mice exposed to 137Cs internal emitters. Animals were injected intraperitoneally with 137CsCl solutions of varying radioactivity, and the absorbed doses were calculated. To determine the dose rate effect, serum samples were collected at 2, 3, 5, 7, and 14 days after injection. Based on the time for each group receiving the cumulative dose of 4 Gy, the dose rate for each group was determined. The dose rates analyzed were 0.16 Gy/day (low), 0.69 Gy/day (medium), and 1.25 Gy/day (high). The results indicated that at a cumulative dose of 4 Gy, the low dose rate group had the least number of statistically significantly differential spectral features. Some identified metabolites showed common changes for different dose rates. For example, significantly altered levels of oleamide and sphingosine 1-phosphate were seen in all three groups. On the other hand, the intensity of three amino acids, Isoleucine, Phenylalanine and Arginine, significantly decreased only in the medium dose rate group. These findings have the potential to be used in assessing the exposure and the biological effects of internal emitters.


2017 ◽  
Vol 24 (4) ◽  
pp. 580-587 ◽  
Author(s):  
Ben R Hawley ◽  
Wei-Ting Lu ◽  
Ania Wilczynska ◽  
Martin Bushell

Abstract Many surveillance and repair mechanisms exist to maintain the integrity of our genome. All of the pathways described to date are controlled exclusively by proteins, which through their enzymatic activities identify breaks, propagate the damage signal, recruit further protein factors and ultimately resolve the break with little to no loss of genetic information. RNA is known to have an integral role in many cellular pathways, but, until very recently, was not considered to take part in the DNA repair process. Several reports demonstrated a conserved critical role for RNA-processing enzymes and RNA molecules in DNA repair, but the biogenesis of these damage-related RNAs and their mechanisms of action remain unknown. We will explore how these new findings challenge the idea of proteins being the sole participants in the response to DNA damage and reveal a new and exciting aspect of both DNA repair and RNA biology.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Rui Gao ◽  
Anirban Chakraborty ◽  
Charlene Geater ◽  
Subrata Pradhan ◽  
Kara L Gordon ◽  
...  

How huntingtin (HTT) triggers neurotoxicity in Huntington’s disease (HD) remains unclear. We report that HTT forms a transcription-coupled DNA repair (TCR) complex with RNA polymerase II subunit A (POLR2A), ataxin-3, the DNA repair enzyme polynucleotide-kinase-3'-phosphatase (PNKP), and cyclic AMP-response element-binding (CREB) protein (CBP). This complex senses and facilitates DNA damage repair during transcriptional elongation, but its functional integrity is impaired by mutant HTT. Abrogated PNKP activity results in persistent DNA break accumulation, preferentially in actively transcribed genes, and aberrant activation of DNA damage-response ataxia telangiectasia-mutated (ATM) signaling in HD transgenic mouse and cell models. A concomitant decrease in Ataxin-3 activity facilitates CBP ubiquitination and degradation, adversely impacting transcription and DNA repair. Increasing PNKP activity in mutant cells improves genome integrity and cell survival. These findings suggest a potential molecular mechanism of how mutant HTT activates DNA damage-response pro-degenerative pathways and impairs transcription, triggering neurotoxicity and functional decline in HD.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6046
Author(s):  
Dousatsu Sakata ◽  
Masao Suzuki ◽  
Ryoichi Hirayama ◽  
Yasushi Abe ◽  
Masayuki Muramatsu ◽  
...  

Track-structure Monte Carlo simulations are useful tools to evaluate initial DNA damage induced by irradiation. In the previous study, we have developed a Gean4-DNA-based application to estimate the cell surviving fraction of V79 cells after irradiation, bridging the gap between the initial DNA damage and the DNA rejoining kinetics by means of the two-lesion kinetics (TLK) model. However, since the DNA repair performance depends on cell line, the same model parameters cannot be used for different cell lines. Thus, we extended the Geant4-DNA application with a TLK model for the evaluation of DNA damage repair performance in HSGc-C5 carcinoma cells which are typically used for evaluating proton/carbon radiation treatment effects. For this evaluation, we also performed experimental measurements for cell surviving fractions and DNA rejoining kinetics of the HSGc-C5 cells irradiated by 70 MeV protons at the cyclotron facility at the National Institutes for Quantum and Radiological Science and Technology (QST). Concerning fast- and slow-DNA rejoining, the TLK model parameters were adequately optimized with the simulated initial DNA damage. The optimized DNA rejoining speeds were reasonably agreed with the experimental DNA rejoining speeds. Using the optimized TLK model, the Geant4-DNA simulation is now able to predict cell survival and DNA-rejoining kinetics for HSGc-C5 cells.


Folia Medica ◽  
2018 ◽  
Vol 60 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Ashish P. Shah ◽  
Chhagan N. Patel ◽  
Dipen K. Sureja ◽  
Kirtan P. Sanghavi

AbstractThe DNA repair process protects the cells from DNA damaging agent by multiple pathways. Majority of the cancer therapy cause DNA damage which leads to apoptosis. The cell has natural ability to repair this damage which ultimately leads to development of resistance of drugs. The key enzymes involved in DNA repair process are poly(ADP-ribose) (PAR) and poly(ADP-ribose) polymerases (PARP). Tumor cells repair their defective gene via defective homologues recombination (HR) in the presence of enzyme PARP. PARP inhibitors inhibit the enzyme poly(ADP-ribose) polymerases (PARPs) which lead to apoptosis of cancer cells. Current clinical data shows the role of PARP inhibitors is not restricted to BRCA mutations but also effective in HR dysfunctions related tumors. Therefore, investigation in this area could be very helpful for future therapy of cancer. This review gives detail information on the role of PARP in DNA damage repair, the role of PARP inhibitors and chemistry of currently available PARP inhibitors.


2018 ◽  
Vol 47 (3-4) ◽  
pp. 97-112 ◽  
Author(s):  
M.P. Little

For stochastic effects such as cancer, linear-quadratic models of dose are often used to extrapolate from the experience of the Japanese atomic bomb survivors to estimate risks from low doses and low dose rates. The low dose extrapolation factor (LDEF), which consists of the ratio of the low dose slope (as derived via fitting a linear-quadratic model) to the slope of the straight line fitted to a specific dose range, is used to derive the degree of overestimation (if LDEF > 1) or underestimation (if LDEF < 1) of low dose risk by linear extrapolation from effects at higher doses. Likewise, a dose rate extrapolation factor (DREF) can be defined, consisting of the ratio of the low dose slopes at high and low dose rates. This paper reviews a variety of human and animal data for cancer and non-cancer endpoints to assess evidence for curvature in the dose response (i.e. LDEF) and modifications of the dose response by dose rate (i.e. DREF). The JANUS mouse data imply that LDEF is approximately 0.2–0.8 and DREF is approximately 1.2–2.3 for many tumours following gamma exposure, with corresponding figures of approximately 0.1–0.9 and 0.0–0.2 following neutron exposure. This paper also cursorily reviews human data which allow direct estimates of low dose and low dose rate risk.


Blood ◽  
1994 ◽  
Vol 83 (11) ◽  
pp. 3384-3389 ◽  
Author(s):  
R Storb ◽  
RF Raff ◽  
FR Appelbaum ◽  
HJ Deeg ◽  
TC Graham ◽  
...  

Abstract We explored in dogs the immunosuppressive properties of 450 cGy total body irradiation (TBI) delivered from two opposing 60Co sources, as assessed by the criterion of successful engraftment of allogeneic genotypically DLA-identical littermate marrow. Two questions were asked in this study. Firstly, does dose rate affect the immunosuppressive effect of TBI when administered in a single dose? Secondly, does fractionation alter the immunosuppression of TBI when delivered at a very fast dose rate? Dose rates studied included 7 and 70 cGy/min, and fractionation involved four fractions of 112.5 cGy each, with 6-hour minimum interfraction intervals. Six of 7 dogs receiving 450 cGy single- dose TBI at 70 cGy/min showed sustained engraftment of the allogeneic marrow, compared with 1 of 7 dogs receiving single-dose TBI at 7 cGy/min (P = .01). Fractionated TBI at 70 cGy/min resulted in sustained allogeneic engraftment in 3 of 10 dogs, a result that was statistically significantly worse than that with single-dose TBI at 70 cGy/min (P = .03) and not statistically different (P = .24) from that with fractionated TBI delivered at 7 cGy/min (0 of 5 dogs engrafted). A single dose of 450 cGy of TBI delivered at a rate of 70 cGy/min is significantly more immunosuppressive than the same total dose delivered at 7 cGy/min. Fractionated TBI at 70 cGy/min is significantly less immunosuppressive than single-dose TBI at 70 cGy/min and not significantly different from fractionated TBI administered at 7 cGy/min. Results are consistent with the notion that significant DNA repair in lymphoid cells is possible during interfraction intervals at the relatively high dose rate of 70 cGy/min.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 840-840 ◽  
Author(s):  
Danielle N. Yarde ◽  
Lori A. Hazlehurst ◽  
Vasco A. Oliveira ◽  
Qing Chen ◽  
William S. Dalton

Abstract The FA/BRCA pathway is involved in DNA damage repair and its importance in oncogenesis has only recently been implicated. Briefly, 8 FA/BRCA pathway family members facilitate the monoubiquitination of FANCD2. Upon monoubiquitination, FANCD2 translocates to the DNA repair foci where it interacts with other proteins to initiate DNA repair. Previously, we reported that the FA/BRCA pathway is upregulated in multiple myeloma cell lines selected for resistance to melphalan (Chen, et al, Blood 2005). Further, reducing FANCF in the melphalan resistant 8226/LR5 myeloma cell line partially reversed resistance, whereas overexpressing FANCF in the drug sensitive 8226/S myeloma line conferred resistance to melphalan. Others have reported, and we have also verified, that bortezomib enhances melphalan response in myeloma cells; however, the mechanism of enhanced melphalan activity in combination with bortezomib has not been reported. Based on our observation that the FA/BRCA pathway confers melphalan resistance, we hypothesized that bortezomib enhances melphalan response by targeting FA/BRCA DNA damage repair pathway genes. To investigate this hypothesis, we first analyzed FA/BRCA gene expression in 8226/S and 8226/LR5 cells treated with bortezomib, using a customized microfluidic card (to detect BRCA1, BRCA2, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCL, RAD51 and RAD51C) and q-PCR. Interestingly, we found that low dose (5nM) bortezomib decreased many FA/BRCA pathway genes as early as 2 hours, with maximal decreases seen at 24 hours. Specifically, 1.5- to 2.5-fold decreases in FANCA, FANCC, FANCD2, FANCE and RAD51C were seen 24 hours post bortezomib exposure. Moreover, pre-treatment of myeloma cells with low dose bortezomib followed by melphalan treatment revealed a greater than 2-fold reduction in FANCD2 gene expression levels. We also found that melphalan treatment alone enhanced FANCD2 protein expression and activation (monoubiquitination), whereas the combination treatment of bortezomib followed by melphalan decreased activation and overall expression of FANCD2 protein. Taken together, these results suggest that bortezomib enhances melphalan response in myeloma by targeting the FA/BRCA pathway. Further understanding of the role of the FA/BRCA pathway in determining melphalan response may allow for more customized and effective treatment of myeloma.


Sign in / Sign up

Export Citation Format

Share Document