scholarly journals In Vivo Evaluation of Cannabis sativa Full Extract on Zebrafish Larvae Development, Locomotion Behavior and Gene Expression

2021 ◽  
Vol 14 (12) ◽  
pp. 1224
Author(s):  
Rosario Licitra ◽  
Marco Martinelli ◽  
Luigi Petrocchi Jasinski ◽  
Maria Marchese ◽  
Claudia Kiferle ◽  
...  

Historically, humans have been using Cannabis sativa for both recreational and medical purposes. Nowadays, cannabis-based products have gained scientific interest due to their beneficial effects on several syndromes and illnesses. The biological activity of cannabinoids is essentially due to the interaction with the endocannabinoid system, and zebrafish (Danio rerio) is a very well-known and powerful in vivo model for studying such specific interactions. The aim of the study was to investigate the effects of different doses of a Cannabis sativa whole extract [dissolved in dimethyl sulfoxide (DMSO)] on zebrafish eggs’ hatchability, embryo post-hatching survival, larvae locomotion behavior and mRNA gene expression. The results showed the absence of toxicity, and no significant differences were observed between treatments for both embryo hatching and survival rate. In addition, larvae exposed to the cannabis extract at the highest dose [containing 1.73 nM and 22.3 nM of ∆9-tetrahydrocannabinol (THC) and cannabidiol (CBD), respectively] showed an increased locomotion compared to the control and DMSO treated groups. Moreover, qRT-PCR analysis showed that the highest dosage of cannabis induced an over-expression of cnr1 and cnr2 cannabinoid receptors. In conclusion, the exposition of zebrafish larvae to the whole extract of Cannabis sativa showed no negative effects on embryo development and survival and enhanced the larvae’s locomotor performances. These findings may open up possible Cannabis sativa applications in human pharmacology as well as in other animal sectors.

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2668
Author(s):  
Ersilia Nigro ◽  
Marialuisa Formato ◽  
Giuseppina Crescente ◽  
Aurora Daniele

Cannabis sativa L. is a source of over 150 active compounds known as phytocannabinoids that are receiving renewed interest due to their diverse pharmacologic activities. Indeed, phytocannabinoids mimic the endogenous bioactive endocannabinoids effects through activation of CB1 and CB2 receptors widely described in the central nervous system and peripheral tissues. All phytocannabinoids have been studied for their protective actions towards different biological mechanisms, including inflammation, immune response, oxidative stress that, altogether, result in an inhibitory activity against the carcinogenesis. The role of the endocannabinoid system is not yet completely clear in cancer, but several studies indicate that cannabinoid receptors and endogenous ligands are overexpressed in different tumor tissues. Recently, in vitro and in vivo evidence support the effectiveness of phytocannabinoids against various cancer types, in terms of proliferation, metastasis, and angiogenesis, actions partially due to their ability to regulate signaling pathways critical for cell growth and survival. The aim of this review was to report the current knowledge about the action of phytocannabinoids from Cannabis sativa L. against cancer initiation and progression with a specific regard to brain, breast, colorectal, and lung cancer as well as their possible use in the therapies. We will also report the known molecular mechanisms responsible for such positive effects. Finally, we will describe the actual therapeutic options for Cannabis sativa L. and the ongoing clinical trials.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3389
Author(s):  
Ishtiaq Ahmed ◽  
Saif Ur Rehman ◽  
Shiva Shahmohamadnejad ◽  
Muhammad Anjum Zia ◽  
Muhammad Ahmad ◽  
...  

In humans, various sites like cannabinoid receptors (CBR) having a binding affinity with cannabinoids are distributed on the surface of different cell types, where endocannabinoids (ECs) and derivatives of fatty acid can bind. The binding of these substance(s) triggers the activation of specific receptors required for various physiological functions, including pain sensation, memory, and appetite. The ECs and CBR perform multiple functions via the cannabinoid receptor 1 (CB1); cannabinoid receptor 2 (CB2), having a key effect in restraining neurotransmitters and the arrangement of cytokines. The role of cannabinoids in the immune system is illustrated because of their immunosuppressive characteristics. These characteristics include inhibition of leucocyte proliferation, T cells apoptosis, and induction of macrophages along with reduced pro-inflammatory cytokines secretion. The review seeks to discuss the functional relationship between the endocannabinoid system (ECS) and anti-tumor characteristics of cannabinoids in various cancers. The therapeutic potential of cannabinoids for cancer—both in vivo and in vitro clinical trials—has also been highlighted and reported to be effective in mice models in arthritis for the inflammation reduction, neuropathic pain, positive effect in multiple sclerosis and type-1 diabetes mellitus, and found beneficial for treating in various cancers. In human models, such studies are limited; thereby, further research is indispensable in this field to get a conclusive outcome. Therefore, in autoimmune disorders, therapeutic cannabinoids can serve as promising immunosuppressive and anti-fibrotic agents.


2008 ◽  
Vol 34 (1) ◽  
pp. 9-21 ◽  
Author(s):  
Angela M. Verdoni ◽  
Natsuyo Aoyama ◽  
Akihiro Ikeda ◽  
Sakae Ikeda

Remodeling of the actin cytoskeleton through actin dynamics (assembly and disassembly of filamentous actin) is known to be essential for numerous basic biological processes. In addition, recent studies have provided evidence that actin dynamics participate in the control of gene expression. A spontaneous mouse mutant, corneal disease 1 ( corn1), is deficient for a regulator of actin dynamics, destrin (DSTN, also known as ADF), which causes epithelial hyperproliferation and neovascularization in the cornea. Dstn corn1 mice exhibit an actin dynamics defect in the corneal epithelial cells, offering an in vivo model to investigate cellular mechanisms affected by the Dstn mutation and resultant actin dynamics abnormalities. To examine the effect of the Dstn corn1 mutation on the gene expression profile, we performed a microarray analysis using the cornea from Dstn corn1 and wild-type mice. A dramatic alteration of the gene expression profile was observed in the Dstn corn1 cornea, with 1,226 annotated genes differentially expressed. Functional annotation of these genes revealed that the most significantly enriched functional categories are associated with actin and/or cytoskeleton. Among genes that belong to these categories, a considerable number of serum response factor target genes were found, indicating the possible existence of an actin-SRF pathway of transcriptional regulation in vivo. A comparative study using an allelic mutant strain with milder corneal phenotypes suggested that the level of filamentous actin may correlate with the level of gene expression changes. Our study shows that Dstn mutations and resultant actin dynamics abnormalities have a strong impact on the gene expression profile in vivo.


Blood ◽  
1998 ◽  
Vol 92 (2) ◽  
pp. 488-495 ◽  
Author(s):  
Hiroyuki Fujita ◽  
Yoshimi Hashimoto ◽  
Susan Russell ◽  
Barbara Zieger ◽  
Jerry Ware

Abstract We have performed a systematic in vivo evaluation of gene expression for the glycoprotein (GP) Ibα subunit of the murine platelet adhesion receptor, GP Ib-IX-V. This study is warranted by in vitro observations of human GP Ibα expression in cells of nonhematopoietic lineage and reports of regulation of the GP Ibα gene by cytokines. However, an in vivo role for a GP Ib-IX-V receptor has not been established beyond that described for normal megakaryocyte/platelet physiology and hemostasis. Our Northern analysis of mouse organs showed high levels of GP Ibα mRNA in bone marrow with a similar expression pattern recapitulated in mice containing a luciferase transgene under the control of the murine GP Ibα promoter. Consistently high levels of luciferase activity were observed in the two hematopoietic organs of mice, bone marrow (1,400 relative light units/μg of protein [RLUs]) and spleen (500 RLUs). Reproducible, but low-levels of luciferase activity were observed in heart, aorta, and lung (30 to 60 RLUs). Among circulating blood cells, the luciferase activity was exclusively localized in platelets. No increase in GP Ibα mRNA or luciferase activity was observed after treatment of mice with lipopolysaccharides (LPS) or tumor necrosis factor-α (TNF-α). We conclude the murine GP Ibα promoter supports a high level of gene expression in megakaryocytes and can express heterologous proteins allowing an in vivo manipulation of platelet-specific proteins in the unique environment of a blood platelet.


2002 ◽  
Vol 282 (6) ◽  
pp. H2422-H2426 ◽  
Author(s):  
Brent R. Sharp ◽  
Steven P. Jones ◽  
David M. Rimmer ◽  
David J. Lefer

Two strains of endothelial nitric oxide synthase (eNOS)-deficient (−/−) mice have been developed that respond differently to myocardial ischemia-reperfusion (MI/R). We evaluated both strains of eNOS−/− mice in an in vivo model of MI/R. Harvard (Har) eNOS−/− mice ( n = 12) experienced an 84% increase in myocardial necrosis compared with wild-type controls ( P < 0.05). University of North Carolina (UNC) eNOS−/−( n = 10) exhibited a 52% reduction in myocardial injury versus wild-type controls ( P < 0.05). PCR analysis of myocardial inducible NO synthase (iNOS) mRNA levels revealed a significant ( P < 0.05) increase in the UNC eNOS−/− mice compared with wild-type mice, and there was no significant difference between the Har eNOS−/− and wild-type mice. UNC eNOS−/− mice treated with an iNOS inhibitor (1400W) exacerbated the extent of myocardial necrosis. When treated with 1400W, Har eNOS−/− did not exhibit a significant increase in myocardial necrosis. These data demonstrate that two distinct strains of eNOS−/− mice display opposite responses to MI/R. Although the protection seen in the UNC eNOS−/− mouse may result from compensatory increases in iNOS, other genes may be involved.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1599-1599
Author(s):  
Ruiqiong Wu ◽  
Aurelie Desgardin ◽  
Stephen M. Jane ◽  
John M. Cunningham

Abstract Understanding the molecular mechanisms that regulate γ-globin gene expression is essential for development of new therapeutic strategies for individuals with sickle cell disease and β-thalassemia. We have previously identified a tissue- and developmentally- specific multiprotein transacting factor complex, the human stage selector protein (SSP), which facilitates the interaction of the g-globin gene promoters with the upstream locus control region enhancer in fetal erythoid cells. This complex interacts with the stage selector element (SSE) in the proximal g-globin promoter, a regulatory motif phylogenetically conserved in primate species with a distinct fetal stage of β-globin like gene expression. Given these observations, we hypothesized that a similar complex modulates γ-globin in the rhesus macaque, a non-human primate model that has been utilized to study β-globin like gene expression. We focused our efforts on NF-E4, given that a human isoform of this factor confers erythroid and fetal specificity to the SSP complex. Fetal liver erythroblasts were obtained from rhesus embryos and analyzed by reverse transcriptase(RT)-PCR analysis for NF-E4 expression. NF-E4 like transcripts were identified in day 60, 80 and 120 embryonic erythroblasts, but not other rhesus tissues, demonstrating an erythroid-specific pattern of expression. Utilizing 5′ RACE, we cloned a full length NF-E4 transcript, identifying an open reading frame encoding a 131 amino acid polypeptide. This 20kD polypeptide shares a high degree of homology with human NF-E4, especially in its carboxy-terminal domain. Like human NF-E4, GST pulldown chromatography confirmed the ability of the rhesus factor to interact directly with CP2 and ALY, the other core components of the SSP. To evaluate rNF-E4 function in vivo, we utilized retrovirally mediated gene transfer to enforce expression of this factor in K562 cells, a model of human fetal erythropoiesis. Initial co-immunoprecipitation studies confirmed the in vivo interaction of rNF-E4 with other components of the SSP. Interestingly, we observed a specific 3-fold induction of γ-globin gene expression in rNF-E4 expressing cells when compared to controls. Moreover, we demonstrated that, like enforced expression of human NF-E4, rNF-E4 induced a significant increase in ε-globin gene expression. Taken together, our results suggest a conservation of NF-E4 expression and function in species with a fetal stage of globin gene expression. Moreover, the identification of rNF-E4 provides a platform for the pre-clinical development of therapeutic agents that induce high levels of NF-E4 in adult erythroblasts.


2011 ◽  
Vol 29 (15_suppl) ◽  
pp. e21086-e21086
Author(s):  
M. Pereira ◽  
J. M. Aliotta ◽  
A. Amaral ◽  
M. Dooner ◽  
L. Goldberg ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Theodore S. Kapellos ◽  
Carlota Recio ◽  
David R. Greaves ◽  
Asif J. Iqbal

The endocannabinoid system consists of endogenous lipid mediators and cannabinoid receptors (CB) 1 and 2. It has previously been demonstrated that activation of the leukocyte-expressed CB2 has anti-inflammatory effects in vivo. Here, we report its role under baseline conditions and in a model of low-dose endotoxemia by comparing CB2 knockout to littermate control mice. CB2-deficient mice displayed significantly more neutrophils and fewer monocytes in the bone marrow under steady state. In initial validation experiments, administration of 1 mg/kg LPS to male C57BL/6J mice was shown to transiently upregulate systemic proinflammatory mediators (peaked at 2 hours) and mobilise bone marrow neutrophils and monocytes into circulation. In CB2 knockout mice, the level of the metalloproteinase MMP-9 was significantly elevated by 2 hours and we also observed augmented recruitment of neutrophils to the spleen in addition to increased levels of Ccl2, Ccl3, Cxcl10, and Il6. Collectively, our data show that the absence of CB2 receptor increases the levels of innate immune cell populations in the bone marrow under steady state. Furthermore, during an acute systemic inflammatory insult, we observe a highly reproducible and site-specific increase in neutrophil recruitment and proinflammatory chemokine expression in the spleen of CB2 knockout mice.


2011 ◽  
Vol 23 (2) ◽  
pp. 353 ◽  
Author(s):  
Damien B. B. P. Paris ◽  
Ewart W. Kuijk ◽  
Bernard A. J. Roelen ◽  
Tom A. E. Stout

Real-time quantitative PCR (qPCR) is invaluable for investigating changes in gene expression during early development, since it can be performed on the limited quantities of mRNA contained in individual embryos. However, the reliability of this method depends on the use of validated stably expressed reference genes for accurate data normalisation. The aim of the present study was to identify and validate a set of reference genes suitable for studying gene expression during equine embryo development. The stable expression of four carefully selected reference genes and one developmentally regulated gene was examined by qPCR in equine in vivo embryos from morula to expanded blastocyst stage. SRP14, RPL4 and PGK1 were identified by geNorm analysis as stably expressed reference genes suitable for data normalisation. RPL13A expression was less stable and changed significantly during the period of development examined, rendering it unsuitable as a reference gene. As anticipated, CDX2 expression increased significantly during embryo development, supporting its possible role in trophectoderm specification in the horse. In summary, it was demonstrated that evidence-based selection of potential reference genes can reduce the number needed to validate stable expression in an experimental system; this is particularly useful when dealing with tissues that yield small amounts of mRNA. SRP14, RPL4 and PGK1 are stable reference genes suitable for normalising expression for genes of interest during in vivo morula to expanded blastocyst development of horse embryos.


Sign in / Sign up

Export Citation Format

Share Document