margin of exposure
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 16)

H-INDEX

16
(FIVE YEARS 1)

Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 795
Author(s):  
Manar Al Ayoubi ◽  
Mohammad Salman ◽  
Lucia Gambacorta ◽  
Nada El Darra ◽  
Michele Solfrizzo

The present study investigated the dietary and urinary OTA occurrence among 44 Lebanese children. Relying on HPLC-FLD analysis, OTA was found in all the urine samples and in 46.5% and 25% of the 24 h duplicate diet and dinner samples, respectively. The means of OTA levels in positive samples were 0.32 ± 0.1 ng/g in 24 h diet, 0.32 ± 0.18 ng/g in dinner and 0.022 ± 0.012 ng/mL in urines. These values corresponded to margin of exposure (MOE) means of 7907 ± 5922 (neoplastic) and 2579 ± 1932 (non-neoplastic) calculated from positive 24 h diet, while 961 ± 599 (neoplastic) and 313 ± 195 (non-neoplastic) calculated from the urine. Since the MOE levels for the neoplastic effect were below the limit (10,000), a major health threat was detected and must be addressed as a health institutions’ priority. Besides, the wide difference between PDIs and MOEs calculated from food and urine suggests conducting further OTA’s toxicokinetics studies before using urine to measure OTA exposure.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3785
Author(s):  
Alex Okaru ◽  
Dirk Lachenmeier

Quantitative assessments of the health risk of the constituents of alcoholic beverages including ethanol are reported in the literature, generally with hepatotoxic effects considered as the endpoint. Risk assessment studies on minor compounds such as mycotoxins, metals, and other contaminants are also available on carcinogenicity as the endpoint. This review seeks to highlight population cancer risks due to alcohol consumption using the margin of exposure methodology. The individual and cumulative health risk contribution of each component in alcoholic beverages is highlighted. Overall, the results obtained consistently show that the ethanol contributes the bulk of harmful effects of alcoholic beverages, while all other compounds only contribute in a minor fashion (less than 1% compared to ethanol). Our data provide compelling evidence that policy should be focused on reducing total alcohol intake (recorded and unrecorded), while measures on other compounds should be only secondary to this goal.


2021 ◽  
pp. 253-265
Author(s):  
Andrzej Starski ◽  
Anna Kukielska ◽  
Jacek Postupolski

Background. Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants, they are also present in food, in which their presence results from environmental pollution and food processing processes. Many compounds from this group, such as benzo(a)pyrene show important toxicity, including genotoxic carcinogenicity. In food heavier PAHs significantly toxic are observed. Objective. The aim of the study was assessment of consumers exposure to PAHs from the diet of surveyed respondents. The assessment of contaminants content in daily food rations is characterized by less uncertainty factor than the assessment based on data on the contamination of individual foodstuffs and their consumption by humans. Material and methods. Research material consisted of daily diets obtained from respondents participating in the study. Content of 22 PAHs (fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(c)fluorene, benz(a)anthracene, chrysene, 5-methylchrysene, perylene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(j)fluoranthene, benzo(e) pyrene, benzo(a)pyrene, benzo(ghi)perylene, indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene, dibenzo(a,e)pyrene, dibenzo(a,l)pyrene, dibenzo(a,h)pyrene, dibenzo(a,i)pyrene) in each of diets was tested using liquid chromatography with a fluorescence detector. The samples were purified by saponification, size exclusion chromatography (SEC) and solid phase extraction (SPE). Results. 52 respondents (n=52) took part in the study. The highest median of PAHs were found for pyrene (1.412 μg/kg), phenantrene (1.276 μg/kg), fluorene (1.151 μg/kg) and fluoranthene (1.087 μg/kg), they were about 10-80 higher than the levels of heavier PAHs. In group of heavy PAHs quantitatively prevailed benzo(e)pyrene (0.109 μg/kg), benzo(b) fluroanthene (0.070 μg/kg), benzo(ghi)perylene (0.065 μg/kg) and perylene (0.059 μg/kg). Generally the median level of contamination with light PAHs was 6.045 μg/kg, while with heavy ones 0.504 μg/kg, in the case of the sum of 4 PAHs regulated in EU law content was 0.301 μg/kg. In the tested samples average 24% of the PAH content was pyrene, light PAHs with a lower toxicity potential accounted for 92% of the content of tested compounds. Sum of 4 regulated PAHs accounted for 58% of content compounds selected by the EU as significant for the assessment of food contamination by PAHs. The composition of the participants' diets was analyzed in terms of determining factors influencing on high levels of PAHs. They were high fat level and presence of smoked or grilled meat and fish products. The mean exposure to benzo(a)pyrene was 0.52 ng/kg b.w. per day, while for the sum of 4 PAHs 3.29 ng/ kg b.w. per day. For light PAHs high exposure was 90.6 ng/kg b.w. per day, while for heavy PAH it was 10.7 ng/kg b.w. per day. Risk assessment was performed by calculating the value of margin of exposure (MoE), which for benzo(a)pyrene and for sum of 4 PAHs were above 25,000 in both considered: mean and high exposure scenario. Conclusions. Studied diets were a source of exposure to PAHs. Higher levels have been reported for light, less toxic PAH as compared to heavy PAH. In both considered scenarios margin of exposure were >25 000. In case of studied diets no risk for consumer was found.


Author(s):  
Yanyan Wang ◽  
Weiwei Zhang ◽  
Florence Mhungu ◽  
Yuhua Zhang ◽  
Yufei Liu ◽  
...  

Chloramphenicol has been used in veterinary medicine, where its residues can remain in food of animal origin, thus potentially causing adverse health effects. This facilitated the ban for its use in food-producing animals globally, but its residues have remained ubiquitous. In this study, food commodities possibly contaminated with chloramphenicol, including livestock meat, poultry, edible viscera, fish, shrimp and crab, molluscs, milk, and eggs, were collected from domestic retail shops in all the 11 districts of Guangzhou and tested for its residue. Probabilistic risk assessment model calculations for its dietary exposure, and the margin of exposure (displayed as mean values and 5th percentile to 95th percentile ranges) were performed by using @RISK software based on a Monte Carlo simulation with 10,000 iterations. The results indicated the detection of chloramphenicol in 248 out of 1454 samples (17.1%), which averaged to a level of 29.1 μg/kg. The highest average value was observed in molluscs (148.2 μg/kg, with the top value as 8196 μg/kg); meanwhile, based on the dietary structure of a typical Cantonese, pond fish, pork, and poultry meat contributed most (about 80%) to the residents’ dietary exposure to chloramphenicol. The margin of exposure for dietary chloramphenicol exposure in Guangzhou residents was 2489, which was apparently below 5000 (the borderline for judging a health risk), particularly low in preschool children (2094, suggesting an increased risk). In conclusion, the study suggests that chloramphenicol exposure in Guangzhou residents is considerable, and its relevant health hazard, especially for preschool children, is worthy of further investigation.


2021 ◽  
Vol 33 (SP1) ◽  
pp. 92-102
Author(s):  
Ali Heshmati ◽  
Mina Khorshidi ◽  
Amin Mousavi Khaneghah

The contamination of aflatoxins (AFs) in 120 samples of sesame seeds, tahini, and tahini halva collected from Iran’s market were evaluated. The exposed risk due to ingestion of aflatoxin B1 (AFB1) via their consumption was estimated with the aid of the Monte Carlo simulation (MCS). The highest prevalence of AF (55%) was associated with sesame seed samples, followed by tahini (45%) and tahini halva (32.5%). The AFB1 concentration in sesame seeds, tahini, and tahini halva was in the ranges of 0.21–12.35, 0.23–5.81, and 0.27–3.56 ?g/kg, respectively. The concentration of the total aflatoxin (TAF) in 7 (17.5%), 8 (20%), and 2 (5%) samples of sesame seeds, tahini, and tahini halva, respectively, was below the limit of European regulations (4 µg/kg), while the levels of AFB1 in 10 (25%), 7 (17.5%), and 6 (15%) samples of sesame seeds, tahini, and tahini halva, respectively, were higher than the European regulations (2 µg/kg). As the percentile 50 and 95 of margin of exposure (MOE) with AFB1 for sesame seed, tahini, and tahini halva was more than 10,000, it could conclude the intake of aflatoxin through the consumption of mentioned products did pose a not remarkable cancer risk for adults.


Food Control ◽  
2021 ◽  
Vol 124 ◽  
pp. 107867
Author(s):  
Sunghyeon Jung ◽  
Seungmin Kim ◽  
Inhwan Kim ◽  
Myung-Sub Chung ◽  
BoKyung Moon ◽  
...  

Author(s):  
Wilson Barón-Cortez ◽  
Sandra Milena Vásquez-Mejia ◽  
Héctor Suárez-Mahecha

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nii Korley Kortei ◽  
Theophilus Annan ◽  
Papa Toah Akonor ◽  
Seidu A. Richard ◽  
Helen Ama Annan ◽  
...  

AbstractMaize and its products are most often prone to fungal contamination especially during cultivation and storage by toxigenic fungi. Aflatoxicosis still persist in Ghana despite the numerous education on several ways of its prevention at the farm as well as its adverse health implications which are food safety concerns. A random assessment and human risk analysis was conducted on 90 maize (72 white and 18 colored) samples from markets across all the regions of Ghana. Total aflatoxins (AFtotal) and the constitutive aflatoxins (AFB1, AFB2, AFG1, and AFG2) were analyzed by High-Performance Liquid Chromatography (HPLC). Out of a total of ninety (90) samples investigated, 72 (80%) tested positive for AFB1 and the contamination levels ranged from 0.78 ± 0.04 to 339.3 ± 8.6 µg kg−1. Similarly, AFG2 was detected in only 14 (15.5%) samples, and their values ranged between 1.09 ± 0.03 and 5.51 ± 0.26 µg kg−1 while AF total ranged between 0.78 ± 0.04 and 445.01 ± 8.9 µg kg−1 constituting approximately 72 (80%). Limits of AFB1 and total aflatoxins (AFtotal) for the Ghana Standards Authority (GSA) (5 and 10 µg kg−1) and the European Food Safety Authority (EFSA) (2 and 4 µg kg−1), were used as checks. A total of 33 (41.25%) samples were above the limits for both. Risk assessments recorded for Estimated Daily Intake (EDI), Hazard Quotient (H.Q), Hazard Index (H.I), Margin of Exposure (MOE), av. Potency, and population risks ranged 0.087–0.38 μg kg−1 bw day−1, 1.5–6.9, 0.0087–0.38, 3.64–12.09, 0–0.0396 ng Aflatoxins kg−1 bw day−1 and, 3.5 × 10–1–0.015 respectively for total aflatoxins. While ranges for aflatoxins B1 (AFB1) recorded were 0.068–0.3 μg Kg bw−1 day−1, 2.43–10.64, 0.0068–0.030, 4.73–20.51, 0–0.0396 ng Aflatoxins kg−1 bw day−1 and, 2.69 × 10–3–0.012 for Estimated Daily Intake (EDI), Hazard Quotient (H.Q), Hazard Index (H.I), Margin of Exposure (MOE), Av. potency, and population risks respectively. It was deduced that although there was some observed contamination of maize across the different ecological zones, the consumption of maize (white and colored) posed no adverse health effects on the population of Ghana since computed H.I was less than 1 (< 1).


Sign in / Sign up

Export Citation Format

Share Document