odorous compounds
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 32)

H-INDEX

32
(FIVE YEARS 5)

2022 ◽  
Vol 138 ◽  
pp. 116-124
Author(s):  
Song Xue ◽  
Wenjie Ding ◽  
Lin Li ◽  
Jiawei Ma ◽  
Fengguang Chai ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Izhar Alam ◽  
Swati Sood ◽  
Chhaya Sharma

Abstract Mixed hardwood unbleached (UB) and final bleached (FB) pulp along with the pulp of intermediate bleaching stages from an integrated paper mill have been undertaken for this study. Headspace GC-MS analysis of these pulps was made to identify the odorous compounds which are volatile organic compounds (VOCs), generated during ageing for 60 days. The result showed that a number of pre-generated VOCs such as aliphatic hydrocarbons and aldehydes are observed in the pulp sample which might be came from the process and it has been observed that upon ageing at ambient conditions, some acid functionalized VOC were generated in the pulp. The generation of these VOCs were established by ATR-FTIR analysis and the results showed that intensity of peak absorbance near 3340  cm − 1 {\text{cm}^{-1}} and 1641  cm − 1 {\text{cm}^{-1}} which represents the –OH stretching of acidic functional group and C=O stretch of aldehyde and acidic functional groups increased after ageing. Generation of acid functionalized volatile compounds were observed more in bleached pulp than in unbleached pulp. Degree of polymerization (DP) is pretty much related to the strength of paper. DP of both unbleached and bleached pulp gets reduced upon ageing while more reduction were observed in bleached pulp. Bleached pulps are more prone to degrade as compared to the unbleached pulp in terms of strength properties such as tensile index, breaking length, burst and double fold were observed. 12.3 % and 21.8 % reduction in tensile index was observed for UB and final bleached FB pulp respectively. Burst index of UB and FB pulp were found reduced to 23.8 % and 41.9 % respectively due to ageing. Reduction in the mechanical and optical properties was also observed in intermediate bleaching stages. There is much evidence for the contribution of VOCs to the degradation of paper. The results are strongly suggested that acid functionalized volatile compounds can have strong effects on degradation of cellulosic paper.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 265
Author(s):  
Wei Gao ◽  
Xiaofang Yang ◽  
Xinmeng Zhu ◽  
Ruyuan Jiao ◽  
Shan Zhao ◽  
...  

Odorous emissions from wastewater treatment plants (WWTPs) cause negative impacts on the surrounding areas and possible health risks on nearby residents. However, the efficient and reliable identification of WWTPs’ odorants is still challenging. In this study, odorous volatile organic compounds (VOCs) from domestic wastewater at different processing units were profiled and identified using gas chromatography-ion mobility spectrometry (GC-IMS) and gas chromatography quadrupole-time-of-flight mass spectrometry (GC-QTOF-MS). The GC-QTOF-MS results confirmed the odor contribution of sulfur organic compounds in wastewater before primary sedimentation and ruled out the significance of most of the hydrocarbons in wastewater odor. The problems in odorous compounds analysis using GC-QTOF-MS were discussed. GC-IMS was developed for visualized analysis on composition characteristics of odorants. Varied volatile compounds were detected by GC-IMS, mainly oxygen-containing VOCs including alcohols, fatty acids, aldehydes and ketones with low odor threshold values. The fingerprint plot of IMS spectra showed the variation in VOCs’ composition, indicating the changes of wastewater quality during treatment process. The GC-IMS technique may provide an efficient profiling method for the changes of inlet water and performance of treatment process at WWTPs.


2021 ◽  
Vol 37 (4) ◽  
pp. 563-572
Author(s):  
Tomoko Yasuda ◽  
Miyoko Waki ◽  
Yasuyuki Fukumoto ◽  
Hiroaki Saito ◽  
Hiroki Yokojima

Highlights We evaluated the performance of a two-stage biotrickling filter in a pig facility. A short empty bed residence time lowered the secondary filter removal efficiency for many odorous compounds. The removal efficiency of some compounds increased when the pH in the secondary water tank decreased. Low-odor-threshold compounds such as MT, n-BA, n-PA, and p-cresol were indicated as targets for optimization. Abstract . Odor is a major problem in pig production, and it is important to minimize odor emissions. To determine the factors influencing variations in odor removal efficiency, we analyzed the performance of a biotrickling filter installed in growing-finishing pig rooms on a commercial farm. Over 16 months, we conducted measurements of representative odorous compounds, namely sulfur compounds (hydrogen sulfide, methanethiol, dimethyl sulfide, and dimethyl disulfide), volatile fatty acids (propanoic acid, 2-methylpropanoic acid, butanoic acid, 3-methylbutanoic acid, and pentanoic acid), and ammonia. The average removal efficiencies of methanethiol, dimethyl disulfide, volatile fatty acids, and ammonia were 83% to 89%, with 50% for hydrogen sulfide and 18% for dimethyl sulfide. For many, but not all, odorous compounds, removal efficiency declined significantly with decreasing empty bed residence time (EBRT). From an analysis of the correlations of odorous compounds’ removal efficiency with the properties of the trickling water, we hypothesized that water properties such as pH, free ammonia, free nitrous acid, ionic species (Na+, Ca2+) concentrations, temperature, electrical conductivity, and biological oxygen demand, in addition to EBRT, were associated with fluctuations in removal efficiency during full-scale operation. The pH in the secondary water tank was negatively correlated with the removal efficiencies of methanethiol, dimethyl sulfide, butanoic acid, 3-methylbutanoic acid, pentanoic acid, and ammonia. Our identification of key odorous compounds indicates the importance of the secondary filter in odor treatment. Biotrickling filters for air in pig facilities could be further optimized by targeting low-odor-threshold compounds such as methanethiol, butanoic acid, pentanoic acid, and p-cresol, in addition to ammonia. Keywords: Ammonia, Biotrickling filter, Pig facility odor, Sulfur compound, Trickling water, Volatile fatty acid.


Sign in / Sign up

Export Citation Format

Share Document