scholarly journals How Learning to Read Changes the Listening Brain

2021 ◽  
Vol 12 ◽  
Author(s):  
Linda Romanovska ◽  
Milene Bonte

Reading acquisition reorganizes existing brain networks for speech and visual processing to form novel audio-visual language representations. This requires substantial cortical plasticity that is reflected in changes in brain activation and functional as well as structural connectivity between brain areas. The extent to which a child’s brain can accommodate these changes may underlie the high variability in reading outcome in both typical and dyslexic readers. In this review, we focus on reading-induced functional changes of the dorsal speech network in particular and discuss how its reciprocal interactions with the ventral reading network contributes to reading outcome. We discuss how the dynamic and intertwined development of both reading networks may be best captured by approaching reading from a skill learning perspective, using audio-visual learning paradigms and longitudinal designs to follow neuro-behavioral changes while children’s reading skills unfold.

2017 ◽  
Author(s):  
Michael Beyeler ◽  
Ariel Rokem ◽  
Geoffrey M. Boynton ◽  
Ione Fine

1. ABSTRACTThe “bionic eye” – so long a dream of the future – is finally becoming a reality with retinal prostheses available to patients in both the US and Europe. However, clinical experience with these implants has made it apparent that the vision provided by these devices differs substantially from normal sight. Consequently, the ability to learn to make use of this abnormal retinal input plays a critical role in whether or not some functional vision is successfully regained. The goal of the present review is to summarize the vast basic science literature on developmental and adult cortical plasticity with an emphasis on how this literature might relate to the field of prosthetic vision. We begin with describing the distortion and information loss likely to be experienced by visual prosthesis users. We then define cortical plasticity and perceptual learning, and describe what is known, and what is unknown, about visual plasticity across the hierarchy of brain regions involved in visual processing, and across different stages of life. We close by discussing what is known about brain plasticity in sight restoration patients and discuss biological mechanisms that might eventually be harnessed to improve visual learning in these patients.


2011 ◽  
Vol 59 (2) ◽  
pp. 196-220 ◽  
Author(s):  
Marjaana Penttinen ◽  
Erkki Huovinen

In this study the effects of skill development on the eye movements of beginning adult sight-readers were examined, focusing on changes in the allocation of visual attention within metrical units as well as in the processing of larger melodic intervals. The participants were future elementary school teachers, taking part in a 9-month-long music training period. During this period, 15 novice sight-readers’ development was observed in three measurements, with 15 amateur musicians functioning as a comparison group. The novices’ allocation of fixation time within metrical units gradually approached a pattern demonstrated by the amateurs in which increased sensitivity to metrical divisions was evinced by larger average fixation times on the latter halves of bars. Concerning larger melodic skips in otherwise stepwise melodic contexts, an analysis of fixation times suggested that the novices’ visual processing of skips did not proceed in terms of note comparison across the skip but rather through a direct identification of the notational symbols involved. Skill development was seen, then, as increasing fluency of this identification process. These and similar findings may lead to a better understanding of the problems encountered by novice sight-readers and thus to advancements in the pedagogy of music reading.


Cephalalgia ◽  
2021 ◽  
pp. 033310242110466
Author(s):  
Roberta Messina ◽  
Maria A Rocca ◽  
Paola Valsasina ◽  
Paolo Misci ◽  
Massimo Filippi

Objective To elucidate the hypothalamic involvement in episodic migraine and investigate the association between hypothalamic resting state functional connectivity changes and migraine patients’ clinical characteristics and disease progression over the years. Methods Ninety-one patients with episodic migraine and 73 controls underwent interictal resting state functional magnetic resonance imaging. Twenty-three patients and controls were re-examined after a median of 4.5 years. Hypothalamic resting state functional connectivity changes were investigated using a seed-based correlation approach. Results At baseline, a decreased functional interaction between the hypothalamus and the parahippocampus, cerebellum, temporal, lingual and orbitofrontal gyrus was found in migraine patients versus controls. Increased resting state functional connectivity between the hypothalamus and bilateral orbitofrontal gyrus was demonstrated in migraine patients at follow-up versus baseline. Migraine patients also experienced decreased right hypothalamic resting state functional connectivity with ipsilateral lingual gyrus. A higher migraine attack frequency was associated with decreased hypothalamic-lingual gyrus resting state functional connectivity at baseline, while greater headache impact at follow-up correlated with decreased hypothalamic-orbitofrontal gyrus resting state functional connectivity at baseline. At follow-up, a lower frequency of migraine attacks was associated with higher hypothalamic-orbitofrontal gyrus resting state functional connectivity. Conclusions During the interictal phase, the hypothalamus modulates the activity of pain and visual processing areas in episodic migraine patients. The hypothalamic-cortical interplay changes dynamically over time according to patients’ clinical features.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Alessio Molfino ◽  
Gianfranco Gioia ◽  
Filippo Rossi Fanelli ◽  
Alessandro Laviano

Inflammation characterizes the course of acute and chronic diseases and is largely responsible for the metabolic and behavioral changes occurring during the clinical journey of patients. Robust data indicate that, during cancer, functional modifications within brain areas regulating energy homeostasis contribute to the onset of anorexia, reduced food intake, and increased catabolism of muscle mass and adipose tissue. In particular, functional changes are associated with increased hypothalamic concentration of proinflammatory cytokines, which suggests that neuroinflammation may represent the adaptive response of the brain to peripheral challenges, including tumor growth. Within this conceptual framework, the vagus nerve appears to be involved in conveying alert signals to the hypothalamus, whereas hypothalamic serotonin appears to contribute to triggering catabolic signals.


Author(s):  
Mohammad S.E Sendi ◽  
Godfrey D Pearlson ◽  
Daniel H Mathalon ◽  
Judith M Ford ◽  
Adrian Preda ◽  
...  

Although visual processing impairments have been explored in schizophrenia (SZ), their underlying neurobiology of the visual processing impairments has not been widely studied. Also, while some research has hinted at differences in information transfer and flow in SZ, there are few investigations of the dynamics of functional connectivity within visual networks. In this study, we analyzed resting-state fMRI data of the visual sensory network (VSN) in 160 healthy control (HC) subjects and 151 SZ subjects. We estimated 9 independent components within the VSN. Then, we calculated the dynamic functional network connectivity (dFNC) using the Pearson correlation. Next, using k-means clustering, we partitioned the dFNCs into five distinct states, and then we calculated the portion of time each subject spent in each state, that we termed the occupancy rate (OCR). Using OCR, we compared HC with SZ subjects and investigated the link between OCR and visual learning in SZ subjects. Besides, we compared the VSN functional connectivity of SZ and HC subjects in each state. We found that this network is indeed highly dynamic. Each state represents a unique connectivity pattern of fluctuations in VSN FNC, and all states showed significant disruption in SZ. Overall, HC showed stronger connectivity within the VSN in states. SZ subjects spent more time in a state in which the connectivity between the middle temporal gyrus and other regions of VNS is highly negative. Besides, OCR in a state with strong positive connectivity between middle temporal gyrus and other regions correlated significantly with visual learning scores in SZ.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3314
Author(s):  
Kun Fang ◽  
Dong Liu ◽  
Salil S. Pathak ◽  
Bowen Yang ◽  
Jin Li ◽  
...  

Although circadian rhythms are thought to be essential for maintaining body health, the effects of chronic circadian disruption during neurodevelopment remain elusive. Here, using the “Short Day” (SD) mouse model, in which an 8 h/8 h light/dark (LD) cycle was applied from embryonic day 1 to postnatal day 42, we investigated the molecular and behavioral changes after circadian disruption in mice. Adult SD mice fully entrained to the 8 h/8 h LD cycle, and the circadian oscillations of the clock proteins, PERIOD1 and PERIOD2, were disrupted in the suprachiasmatic nucleus and the hippocampus of these mice. By RNA-seq widespread changes were identified in the hippocampal transcriptome, which are functionally associated with neurodevelopment, translational control, and autism. By western blotting and immunostaining hyperactivation of the mTOR and MAPK signaling pathways and enhanced global protein synthesis were found in the hippocampi of SD mice. Electrophysiological recording uncovered enhanced excitatory, but attenuated inhibitory, synaptic transmission in the hippocampal CA1 pyramidal neurons. These functional changes at synapses were corroborated by the immature morphology of the dendritic spines in these neurons. Lastly, autistic-like animal behavioral changes, including impaired social interaction and communication, increased repetitive behaviors, and impaired novel object recognition and location memory, were found in SD mice. Together, these results demonstrate molecular, cellular, and behavioral changes in SD mice, all of which resemble autistic-like phenotypes caused by circadian rhythm disruption. The findings highlight a critical role for circadian rhythms in neurodevelopment.


2020 ◽  
Vol 30 (11) ◽  
pp. 5617-5625
Author(s):  
Kiwamu Matsuoka ◽  
Manabu Makinodan ◽  
Soichiro Kitamura ◽  
Masato Takahashi ◽  
Hiroaki Yoshikawa ◽  
...  

Abstract In autism spectrum disorder (ASD), the complexity-specific hypothesis explains that atypical visual processing is attributable to selective functional changes in visual pathways. We investigated dendritic microstructures and their associations with functional connectivity (FC). Participants included 28 individuals with ASD and 29 typically developed persons. We explored changes in neurite orientation dispersion and density imaging (NODDI) and brain areas whose FC was significantly correlated with NODDI parameters in the explored regions of interests. Individuals with ASD showed significantly higher orientation dispersion index (ODI) values in the left occipital gyrus (OG) corresponding to the secondary visual cortex (V2). FC values between the left OG and the left middle temporal gyrus (MTG) were significantly negatively correlated with mean ODI values. The mean ODI values in the left OG were significantly positively associated with low registration of the visual quadrants of the Adolescent/Adult Sensory Profile (AASP), resulting in a significant positive correlation with passive behavioral responses of the AASP visual quadrants; additionally, the FC values between the left OG and the left MTG were significantly negatively associated with reciprocal social interaction. Our results suggest that abnormal V2 dendritic arborization is associated with atypical visual processing by altered intermediation in the ventral visual pathway.


Author(s):  
Jamie D. Feusner ◽  
Danyale McCurdy-McKinnon

This chapter covers the latest studies addressing neurobiological and genetic/heritable factors that may contribute to body dysmorphic disorder (BDD). BDD affects approximately 2% of the population and involves perceived defects of appearance along with obsessive preoccupation and repetitive, compulsive-like behaviors. Studies of visual processing suggest that disturbances in visual perception and visuospatial information processing, characterized by heightened attention to detail and impairment in holistic and global assessment, contribute to the condition. Also reviewed are studies of brain circuitry in BDD, which implicate white matter and structural connectivity abnormalities as playing possible roles in the pathophysiology of BDD. Finally, this chapter reviews the evidence that the susceptibility for BDD may be partly heritable and that there may be shared genetic factors among the obsessive-compulsive and related disorders (of which BDD is a member) as a group.


2015 ◽  
Author(s):  
Claudia Lunghi

In this research binocular rivalry is used as a tool to investigate different aspects of visual and multisensory perception. Several experiments presented here demonstrated that touch specifically interacts with vision during binocular rivalry and that the interaction likely occurs at early stages of visual processing, probably V1 or V2. Another line of research also presented here demonstrated that human adult visual cortex retains an unexpected high degree of experience-dependent plasticity by showing that a brief period of monocular deprivation produced important perceptual consequences on the dynamics of binocular rivalry, reflecting a homeostatic plasticity. In summary, this work shows that binocular rivalry is a powerful tool to investigate different aspects of visual perception and can be used to reveal unexpected properties of early visual cortex.


Author(s):  
Elham Hassanshahi ◽  
Zahra Asadollahi ◽  
Hossein Azin ◽  
Jalal Hassanshahi ◽  
Amin Hassanshahi ◽  
...  

Multiple sclerosis (MS) is defined as an inflammatory, progressive, and autoimmune disease in the central nervous system, recognized by its subsequent demyelination and neurodegeneration. Cognitive disorders are among the most severe problems in patients with MS, affecting their personal and professional life. This study is aimed to evaluate memory and visual learning, visual processing speed, and spatial perception in MS patients based on age, gender, and level of education. This cross-sectional study was carried out on 42 MS patients (based on McDonald’s criteria). The level of disability in patients was assessed using EDSS, and cognitive performance was evaluated by the use of judgment of line orientation (JLO), symbol digit modalities test (SDMT), and revised brief visuospatial memory test (BVMT-R). In this study, patients were within the age range of 20-51 years, 73.8% of which were female, and 61.9% had academic degrees. According to the classes of independent variables (gender, education level), no significant difference was observed in the mean scores of dependent variables (JLO, SDMT, and BVMR-T scores) (P>0.05). In addition, age as a confounding variable had no impact (P>0.05). In addition, gender and level of education had no significant interaction (P>0.05). According to the results of the study, age, gender, and education level had no significant effect on memory and visual learning, visual processing speed, and spatial perception.


Sign in / Sign up

Export Citation Format

Share Document