scholarly journals An Experimental Investigation of the Impact of Random Spacing Errors on the Dynamic Transmission Error of Spur Gear Pairs

Author(s):  
Muhammad Nevin Anandika ◽  
Ahmet Kahraman ◽  
David Talbot

Abstract Noise and vibration performance of a gear system is critical in any engineering industry. Excessive vibrational amplitudes originated by the excitations at the gear meshes propagate to the transmission housing to cause noticeable noise, while also increasing gear tooth stresses to degrade durability. As such, gear designers must generate designs that are nominally quiet with low-vibration amplitudes. This implies a gear pair fabricated exactly to the specifications of its blue print will be acceptable for its vibration behavior. Achieving this, however, is not sufficient. As the manufacturing of gears require them to be subject to bands of tolerances afforded by the manufacturing processes employed, the designers must be concerned about variations to the performance of their presumably quite baseline designs within these tolerance bands. This research aims at demonstrating how one type of manufacturing error, random tooth spacing errors, alter the vibratory behavior of a spur gear pair. Two pairs of spur gears are tested for their dynamic transmission error performance. One gear pair with no tooth spacing errors form the baseline. The second gear pair contain an intentionally induced random sequence of spacing errors. The forced vibration responses of both gear pairs are compared within wide ranges of speed and torque. This comparison shows that there is a clear and significant impact of random spacing errors on spur gear dynamics, measurable through examination of their respective transmission error signatures. In the off-resonance regions of speed, vibration amplitudes of the random error pair are higher than the no-error baseline spur gear pair. Meanwhile, at or near resonance peaks, the presence of random spacing errors tends to lower the peak amplitudes slightly as compared to the no-error baseline spur gear pair. The presence of random spacing errors introduces substantial harmonic content that are non-mesh harmonics. This results in a broadband frequency spectrum in addition to an otherwise well-defined frequency spectrum with gear-mesh order components, pointing to an additional concern of noise quality.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Zhong Wang ◽  
Lei Zhang ◽  
Yuan-Qing Luo ◽  
Chang-Zheng Chen

In the actual measurements, vibration and noise spectrum of gear pair often exhibits sidebands around the gear mesh harmonic orders. In this study, a nonlinear time-varying dynamic model of spur gear pair was established to predict the modulation sidebands caused by the AM-FM modulation internal excitation. Here, backlash, modulation time-varying mesh stiffness, and modulation transmission error are considered. Then the undamped natural mode was studied. Numerical simulation was made to reveal the dynamic characteristic of a spur gear under modulation condition. The internal excitation was shown to exhibit obvious modulation sideband because of the modulation time-varying mesh stiffness and modulation transmission error. The Runge-Kutta method was used to solve the equations for analyzing the dynamic characteristics with the effect of modulation internal excitation. The result revealed that the response under modulation excitation exhibited obvious modulation sideband. The response under nonmodulation condition was also calculated for comparison. In addition, an experiment was done to verify the prediction of the modulation sidebands. The calculated result was consistent with the experimental result.


2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Zhihui Liu ◽  
Hongzhi Yan ◽  
Yuming Cao ◽  
Yuqing Lai

A four-degree-of-freedom nonlinear transverse and torsional vibration model of spur gear transmission system for one-way clutch, two-shaft assembly was developed, in which the one-way clutch was modeled as a piecewise nonlinear spring with discontinuous stiffness, considering the factors such as the time-varying gear mesh stiffness, static transmission error, and nonlinearity backlash. With the help of bifurcation diagrams, time domain response diagrams, phase plane diagrams, and Poincaré maps, the effects of the excitation frequency and the torsional stiffness of one-way clutch on the dynamic behavior of gear transmission system for one-way clutch, two-shaft assembly are investigated in detail by using Runge-Kutta method. Numerical results reveal that the system response involves period-1 motion, multiperiodic motion, bifurcation, and chaotic motion. Large torsional stiffness of one-way clutch can increase the impact and lead to instability in the system. The results can present a useful source of reference for technicians and engineers for dynamic design and vibration control of such system.


2006 ◽  
Vol 129 (1) ◽  
pp. 75-84 ◽  
Author(s):  
V. K. Tamminana ◽  
A. Kahraman ◽  
S. Vijayakar

In this study, two different dynamic models, a finite-element-based deformable-body model and a simplified discrete model, are developed to predict dynamic behavior of spur gear pairs. Dynamic transmission error (DTE) and dynamic factors (DF) defined based on the gear mesh loads, tooth loads and bending stresses are computed for a number of unmodified and modified spur gears within a wide range of rotational speed for different involute contact ratios and torque values. Although similar models were proposed in the past, they were neither fully validated nor equipped to predict both DTE and different forms of DF. Accordingly, this study focuses on (i) validation of both models through an extensive set of experimental data obtained from a set of tests using spur gear having unmodified and modified tooth profiles, and (ii) establishment of a direct link between DTE and different forms of DF, especially the ones based on tooth forces and the root stresses. The predicted DF and DTE values are related to each other through simplified formulas. Impact of nonlinear behavior, such as tooth separations and jump discontinuities on DF, is also quantified.


1999 ◽  
Vol 121 (1) ◽  
pp. 112-118 ◽  
Author(s):  
A. Kahraman ◽  
G. W. Blankenship

The influence of involute contact ratio on the torsional vibration behavior of a spur gear pair is investigated experimentally by measuring the dynamic transmission error of several gear pairs using a specially designed gear test rig. Measured forced response curves are presented, and harmonic amplitudes of dynamic transmission error are compared above and below gear mesh resonances for both unmodified and modified gears having various involute contact ratio values. The influence of involute contact ratio on dynamic transmission error is quantified and a set of generalized, experimentally validated design guidelines for the proper selection of involute contact ratio to achieve quite gear systems is presented. A simplified analytical model is also proposed which accurately describes the effects of involute contact ratio on dynamic transmission error.


1999 ◽  
Vol 121 (2) ◽  
pp. 313-315 ◽  
Author(s):  
A. Kahraman ◽  
G. W. Blankenship

The influence of gear tooth flank modifications in the form of linear involute tip relief on the torsional vibration behavior of a spur gear pair is investigated by using an experimental test stand. Measured dynamic transmission error (DTE) values are compared and a family of forced response curves is presented. Guidelines for the design of quiet spur gear sets are also given.


2019 ◽  
Vol 39 (4) ◽  
pp. 1039-1051 ◽  
Author(s):  
Xiong Chun ◽  
Chen Siyu

Experimental measurement of transmission error and vibration of a gear pair with crown modification are developed. With the help of high-precision optical encoder, effects of gear misalignment on unloaded and lightly loaded dynamic transmission error, which are relative to gear rattle, are investigated. The gear mesh misalignment is introduced by eccentric sleeve assembled on the output shaft. Effects of modification and misalignment on the dynamic transmission error, are studied at different load and driving velocity conditions. The experimental results show that, with the increase of the crown amplitude, the peak-to-peak values of dynamic transmission error are decreasing dramatically. Impact deformation or elastic deformation is a very important part of the dynamic transmission error although they are unloaded or lightly loaded. The components in harmonics of meshing frequency will change distinctly comparing cases at low input shaft velocity without and with misalignment, but different phenomena are detected while increasing the input shaft velocity. Finally, the relation between transmission error and gear box vibration is illustrated, and spectrum kurtosis is introduced to reveal gear rattle.


Author(s):  
Michael Benatar ◽  
Michael Handschuh ◽  
Ahmet Kahraman ◽  
David Talbot

Abstract For a gear pair, both the contact pattern and the transmission error (TE) significantly impact durability and fatigue life. Design and manufacturing processes are often aimed at improving the contact pattern and reducing the overall TE. Other errors, such as runout and wobble, are often induced during the installation of power transmission systems, and they can alter the contact pattern and TE of an otherwise well-designed gear pair. This study provides a methodology to experimentally investigate the impact of wobble errors on the contact pattern and static transmission error (STE) of helical gears. It first provides a description of the modifications to an existing test machine. Next, it describes the gear specifications, preliminary testing matrix, data acquisition and processing procedure, as well as the experimental results obtained with regards to both the contact pattern and STE. The following are observed while describing the experimental results. For a test with no wobble and no runout, the contact pattern remains the same at every rotational position. However, by introducing even a small amount of wobble, the contact will shift from one side of the face width of the gear to the opposite side of the face width of the gear within one revolution. Introduction of wobble may increase the STE and sideband activity around gear mesh harmonics, especially as torque increases. Yet the modest increases in STE and sideband activity seen with the introduction of wobble are not enough to make definitive conclusions. The feasibility of the modified test setup has been demonstrated, and preliminary results have been presented. However, additional data collection should be completed in order to study the impact of runout and wobble on both spur and helical gear pairs with various microgeometry modifications and manufacturing errors.


2002 ◽  
Vol 124 (4) ◽  
pp. 794-804 ◽  
Author(s):  
Lin Liu ◽  
Darryll J. Pines

This paper develops an analytical model to simulate the gear mesh contact for a spur gear pair with and without tooth damage. Three common gear tooth faults are simulated including pitting, wear and root cracks. The effect of tooth face width on detection sensitivity for pitting and the effect of crack width on detection sensitivity for crack are investigated. Using static performance measures, such as transmission error, results suggest that basic gear design parameters, such as diametral pitch, pressure angle and number of teeth, may have a significant effect on damage detection sensitivity. It appears that a decrease in diametral pitch will enhance damage detection sensitivity for all the three types of damage. An increase in pressure angle or number of teeth will enhance detection sensitivity for pitting damage, but tends to decrease the sensitivity to crack or wear damage.


Sign in / Sign up

Export Citation Format

Share Document